Fernanda S Poletto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1061046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction $\hat{a} \in \mathbb{D}$ riven 3D to 2D Transformation of Cu Nanoparticles. Small, 2022, , 2106583.	5.2	3
2	Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomedicine and Pharmacotherapy, 2022, 146, 112249.	2.5	9
3	Monoolein-based nanoparticles containing indinavir: a taste-masked drug delivery system. Drug Development and Industrial Pharmacy, 2021, 47, 83-91.	0.9	8
4	Preliminary results of PBA-loaded nanoparticles development and the effect on oxidative stress and neuroinflammation in rats submitted to a chemically induced chronic model of MSUD. Metabolic Brain Disease, 2021, 36, 1015-1027.	1.4	1
5	Reply to the Comment on "New horizons in photocatalysis: the importance of mesopores for cerium oxide―by A. S. Thill, W. T. Figueiredo, F. O. Lobato, M. O. Vaz, W. P. Fernandes, V. E. Carvalho, E. A. Soares, F. Poletto, S. R. Teixeira and F. Bernardi, <i>J. Mater. Chem. A</i> , 2020, 8 , 24752. Journal of Materials Chemistry A. 2021. 9. 23726-23730.	5.2	1
6	Encapsulation in lipid-core nanocapsules improves topical treatment with the potent antileishmanial compound CH8. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102121.	1.7	6
7	New horizons in photocatalysis: the importance of mesopores for cerium oxide. Journal of Materials Chemistry A, 2020, 8, 24752-24762.	5.2	21
8	Shifting the band gap from UV to visible region in cerium oxide nanoparticles. Applied Surface Science, 2020, 528, 146860.	3.1	31
9	Nanoparticles containing βâ€cyclodextrin potentially useful for the treatment of Niemannâ€Pick C. Journal of Inherited Metabolic Disease, 2020, 43, 586-601.	1.7	13
10	Physiological neutral pH drives a gradual lamellar-to-reverse cubic-to-reverse hexagonal phase transition in phytantriol-based nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 177, 204-210.	2.5	13
11	Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility. Journal of Drug Delivery Science and Technology, 2019, 51, 115-126.	1.4	92
12	Oxidative Imbalance, Nitrative Stress, and Inflammation in C6 Glial Cells Exposed to Hexacosanoic Acid: Protective Effect of N-acetyl-l-cysteine, Trolox, and Rosuvastatin. Cellular and Molecular Neurobiology, 2018, 38, 1505-1516.	1.7	11
13	Monoolein-based nanoparticles for drug delivery to the central nervous system: A platform for lysosomal storage disorder treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 96-103.	2.0	15
14	Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. Journal of Materials Chemistry B, 2018, 6, 4920-4928.	2.9	6
15	Tuning the oxygen vacancy population of cerium oxide (CeO2â^'x, 0 <x<0.5) applied<br="" nanoparticles.="">Surface Science, 2017, 422, 1102-1112.</x<0.5)>	3.1	76
16	Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology, 2017, 144, 1769-1774.	0.7	30
17	Smart Polymers: Synthetic Strategies, Supramolecular Morphologies, and Drug Loading. , 2016, , 147-164.		1
18	Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release. Colloids and Surfaces B: Biointerfaces, 2016, 147, 210-216.	2.5	18

Fernanda S Poletto

#	Article	IF	CITATIONS
19	Liquid Crystalline Nanostructured Polymer Blends. , 2016, , 39-54.		2
20	How Sorbitan Monostearate Can Increase Drug-Loading Capacity of Lipid-Core Polymeric Nanocapsules. Journal of Nanoscience and Nanotechnology, 2015, 15, 827-837.	0.9	23
21	An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter, 2013, 9, 1141-1150.	1.2	65
22	Sustained Antioxidant Activity of Quercetin-Loaded Lipid-Core Nanocapsules. Journal of Nanoscience and Nanotechnology, 2012, 12, 2874-2880.	0.9	17
23	Fluorescent-Labeled Poly(<i>ε</i> -caprolactone) Lipid-Core Nanocapsules: Synthesis, Physicochemical Properties and Macrophage Uptake. Journal of Colloid Science and Biotechnology, 2012, 1, 89-98.	0.2	36
24	Sputtering onto Liquids: From Thin Films to Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 16362-16367.	1.5	67
25	Polymeric Nanocapsules: Concepts and Applications. , 2011, , 49-68.		25
26	Simultaneous Control of Capsaicinoids Release from Polymeric Nanocapsules. Journal of Nanoscience and Nanotechnology, 2011, 11, 2398-2406.	0.9	37
27	Polymeric Nanocapsules for Drug Delivery. Surfactant Science, 2010, , 71-98.	0.0	19
28	Size-Control of Poly(ε-caprolactone) Nanospheres by the Interface Effect of Ethanol on the Primary Emulsion Droplets. Journal of Nanoscience and Nanotechnology, 2009, 9, 4933-4941.	0.9	12
29	Sustained Release from Lipid-Core Nanocapsules by Varying the Core Viscosity and the Particle Surface Area. Journal of Biomedical Nanotechnology, 2009, 5, 130-140.	0.5	135
30	Semisolid Formulation Containing a Nanoencapsulated Sunscreen: Effectiveness, <i>In Vitro</i> Photostability and Immune Response. Journal of Biomedical Nanotechnology, 2009, 5, 240-246.	0.5	52
31	The effect of polymeric wall on the permeability of drug-loaded nanocapsules. Materials Science and Engineering C, 2008, 28, 472-478.	3.8	46
32	Controlling the size of poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles prepared by emulsification–diffusion technique using ethanol as surface agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 105-112.	2.3	52
33	Nanotechnology in the Treatment and Detection of Intraocular Cancers. Journal of Biomedical Nanotechnology, 2008, 4, 410-418.	0.5	22
34	Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs. International Journal of Pharmaceutics, 2007, 345, 70-80.	2.6	53