James C Hower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10610050/publications.pdf

Version: 2024-02-01

202 papers

11,845 citations

19608 61 h-index 99 g-index

204 all docs

204 docs citations

times ranked

204

3796 citing authors

#	Article	IF	CITATIONS
1	A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Progress in Energy and Combustion Science, 2022, 88, 100954.	15.8	64
2	Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Applied Geochemistry, 2022, 136, 105150.	1.4	3
3	Elemental geochemistry and organic facies of selected cretaceous coals from the Benue Trough basin in Nigeria: Implication for paleodepositional environments. Marine and Petroleum Geology, 2022, 137, 105490.	1.5	8
4	Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel, 2022, 313, 123054.	3.4	4
5	Petrology of the Pittsburgh coalbed (Gzhelian (Stephanian C), Monongahela Group/Formation) in Pennsylvania, West Virginia, and Ohio. International Journal of Coal Geology, 2022, 249, 103907.	1.9	O
6	Mineralogical and geochemical characteristics of tonsteins from the Middle Jurassic Yan'an Formation, Ordos Basin, North China. International Journal of Coal Geology, 2022, 253, 103968.	1.9	14
7	Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin, China. Ore Geology Reviews, 2022, 144, 104848.	1.1	18
8	Zeolite and associated mineral occurrences in high-sulphur coals from the middle Miocene upper coal seam from underground mines in the Çayirhan coalfield, (Beypazarı, Central Turkey). International Journal of Coal Geology, 2022, 256, 104010.	1.9	11
9	Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments. Energy Geoscience, 2022, 3, 300-313.	1.3	2
10	Petrology, palynology, and geochemistry of the Pond Creek coal (Pennsylvanian, Duckmantian), Pike County, Kentucky: Overprints of penecontemporaneous tectonism and peat doming. International Journal of Coal Geology, 2022, 258, 104027.	1.9	6
11	Intrinsic characteristics of coal combustion residues and their environmental impacts: A case study for Bangladesh. Fuel, 2022, 324, 124711.	3.4	18
12	Estimation of heavy and light rare earth elements of coal by intelligent methods. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 70-79.	1.2	6
13	Mercury stable isotope fractionation during gaseous elemental mercury adsorption onto coal fly ash particles: Experimental and field observations. Journal of Hazardous Materials, 2021, 405, 124280.	6.5	10
14	Rare Earth-bearing particles in fly ash carbons: Examples from the combustion of eastern Kentucky coals. Energy Geoscience, 2021, 2, 90-98.	1.3	18
15	Nitrogen isotopic compositions in NH4+-mineral-bearing coal: Origin and isotope fractionation. Chemical Geology, 2021, 559, 119946.	1.4	21
16	A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal of Coal Geology, 2021, 237, 103691.	1.9	29
17	Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals. Fuel, 2021, 289, 119990.	3.4	19
18	Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel, 2021, 291, 120122.	3.4	10

#	Article	IF	Citations
19	Distribution of rare earth elements in the pilot-scale processing of fly ashes derived from eastern Kentucky coals: Comparisons of the feed and processed ashes. Fuel, 2021, 295, 120562.	3.4	18
20	The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations. Journal of Hazardous Materials, 2021, 415, 125610.	6 . 5	23
21	Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 2021, 222, 103815.	4.0	115
22	Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel, 2021, 300, 120948.	3.4	27
23	Signatures of rare earth element distributions in fly ash derived from the combustion of Central Appalachian, Illinois, and Powder River basin coals. Fuel, 2021, 301, 121048.	3.4	13
24	Distribution of rare earth elements and other critical elements in beneficiated Pennsylvania anthracites. Fuel, 2021, 304, 121400.	3.4	16
25	Soft modelling of the Hardgrove grindability index of bituminous coals: An overview. International Journal of Coal Geology, 2021, 247, 103846.	1.9	7
26	Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. Fuel, 2021, 304, 121468.	3 . 4	8
27	Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. International Journal of Coal Geology, 2021, 247, 103855.	1.9	29
28	Phyteral perspectives: Every maceral tells a story. International Journal of Coal Geology, 2021, 247, 103849.	1.9	14
29	Distribution of Rare Earth Elements in the Illinois Basin Coals. Mining, Metallurgy and Exploration, 2021, 38, 1645-1663.	0.4	4
30	Petrology of the Fire Clay coal, Bear Branch, Perry County, Kentucky. International Journal of Coal Geology, 2021, 249, 103891.	1.9	7
31	Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 2021, 139, 104582.	1.1	29
32	Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel, 2020, 263, 116740.	3.4	28
33	Characterization of superhigh-organic-sulfur RaÅ;a coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology, 2020, 217, 103344.	1.9	26
34	Organic associations of non-mineral elements in coal: A review. International Journal of Coal Geology, 2020, 218, 103347.	1.9	128
35	Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 2020, 219, 103383.	1.9	237
36	History of applied coal petrology in the United States. IV. Reflections on the centennial of the introduction of coal petrology to North America. International Journal of Coal Geology, 2020, 229, 103576.	1.9	7

#	Article	IF	CITATIONS
37	Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: implications for palaeoclimate and sedimentary conditions. Organic Geochemistry, 2020, 149, 104103.	0.9	20
38	Distinction of strontium isotope ratios between water-soluble and bulk coal fly ash from the United States. International Journal of Coal Geology, 2020, 222, 103464.	1.9	12
39	Aspects of rare earth element enrichment in Central Appalachian coals. Applied Geochemistry, 2020, 120, 104676.	1.4	22
40	Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542.	3.4	37
41	Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. International Journal of Coal Science and Technology, 2020, 7, 633-651.	2.7	7
42	Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. International Journal of Coal Geology, 2020, 220, 103413.	1.9	21
43	Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals. Minerals (Basel, Switzerland), 2020, 10, 105.	0.8	32
44	Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. International Journal of Coal Geology, 2020, 223, 103468.	1.9	46
45	Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Applied Geochemistry, 2020, 117, 104602.	1.4	23
46	Characterization of stoker ash from the combustion of high-lanthanide coal at a Kentucky bourbon distillery. International Journal of Coal Geology, 2019, 213, 103260.	1.9	16
47	Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel, 2019, 255, 115710.	3.4	34
48	Palynology, organic petrology and geochemistry of the Bell coal bed in Western Kentucky, Eastern Interior (Illinois) Basin, USA. International Journal of Coal Geology, 2019, 213, 103264.	1.9	8
49	Mineralogy and geochemistry of the Palaeogene low-rank coal from the Baise Coalfield, Guangxi Province, China. International Journal of Coal Geology, 2019, 214, 103282.	1.9	17
50	Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Science of the Total Environment, 2019, 663, 177-188.	3.9	51
51	Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky. Minerals (Basel, Switzerland), 2019, 9, 206.	0.8	21
52	Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environmental Science &	4.6	88
53	Rare earth element associations in the Kentucky State University stoker ash. International Journal of Coal Geology, 2018, 189, 75-82.	1.9	41
54	Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 192, 73-82.	1.9	24

#	Article	IF	CITATIONS
55	Geochemistry and Nanomineralogy of Feed Coals and Their Coal Combustion Residues from Two Different Coal-Based Industries in Northeast India. Energy & Samp; Fuels, 2018, 32, 3697-3708.	2.5	17
56	A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 2018, 302-303, 359-369.	0.6	61
57	Rare earth minerals in a "no tonstein―section of the Dean (Fire Clay) coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 193, 73-86.	1.9	52
58	A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products. Fuel, 2018, 228, 297-308.	3.4	36
59	Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui, China: Discussion. Ore Geology Reviews, 2018, 102, 937-939.	1.1	6
60	Valuable elements in Chinese coals: a review. International Geology Review, 2018, 60, 590-620.	1.1	170
61	Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environmental Sciences: Processes and Impacts, 2018, 20, 1390-1403.	1.7	26
62	Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. ACS Omega, 2018, 3, 17637-17645.	1.6	53
63	Ultrafine Mineral Associations in Superhigh-Organic-Sulfur Kentucky Coals. ACS Omega, 2018, 3, 12179-12187.	1.6	6
64	Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. International Journal of Coal Geology, 2018, 195, 75-83.	1.9	103
65	Estimating REY content of eastern Kentucky coal samples based on their associated ash elements. Journal of Rare Earths, 2018, 36, 1234-1238.	2.5	10
66	Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 2018, 196, 106-114.	1.9	103
67	Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. Environmental Pollution, 2018, 242, 1950-1960.	3.7	48
68	Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. Energy & Samp; Fuels, 2018, 32, 8891-8894.	2.5	6
69	Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology, 2018, 197, 84-114.	1.9	53
70	Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 2017, 80, 116-140.	1.1	80
71	Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 2017, 80, 1-17.	1.1	188
72	Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant and with Emphasis on Rare Earth Elements. Energy & Energy & 2017, 31, 438-447.	2.5	35

#	Article	IF	Citations
73	Mississippian (Serpukhovian; Chesterian Stage) coals from the Fluorspar District, Crittenden and Caldwell counties, Kentucky: Petrological and palynological compositions and their indications for peat-producing ecosystems. International Journal of Coal Geology, 2017, 174, 23-30.	1.9	8
74	Coal-derived unburned carbons in fly ash: A review. International Journal of Coal Geology, 2017, 179, 11-27.	1.9	158
75	Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). International Journal of Coal Geology, 2017, 179, 60-71.	1.9	6
76	Chemistry and petrology of paired feed coal and combustion ash from anthracite-burning stoker boilers. Fuel, 2017, 199, 438-446.	3.4	15
77	Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 2017, 175, 44-74.	4.0	145
78	Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. International Journal of Coal Geology, 2017, 184, 1-10.	1.9	179
79	Petrology and palynology of the Middle Pennsylvanian Leatherwood coal bed, Eastern Kentucky: Indications for depositional environments. International Journal of Coal Geology, 2017, 181, 23-38.	1.9	14
80	Impact of coal source changes on mercury content in fly ash: Examples from a Kentucky power plant. International Journal of Coal Geology, 2017, 170, 2-6.	1.9	17
81	Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. Coal Combustion and Gasification Products, 2017, 9, 22-33.	1.0	43
82	Ponded and Landfilled Fly Ash as a Source of Rare Earth Elements from a Kentucky Power Plant. Coal Combustion and Gasification Products, 2017, 9, 1-21.	1.0	28
83	Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts. Minerals (Basel, Switzerland), 2016, 6, 32.	0.8	195
84	Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2016, 160-161, 63-72.	1.9	13
85	Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria. Fuel, 2016, 186, 674-684.	3.4	17
86	Petrology and chemistry of sized Pennsylvania anthracite, with emphasis on the distribution of rare earth elements. Fuel, 2016, 185, 305-315.	3.4	34
87	Trends in the Rare Earth Element Content of U.SBased Coal Combustion Fly Ashes. Environmental Science & Environmental Scienc	4.6	208
88	Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. International Journal of Coal Geology, 2016, 160-161, 73-81.	1.9	149
89	Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal of Coal Geology, 2016, 166, 71-95.	1.9	143
90	Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 2016, 29, 60-82.	3.0	144

#	Article	IF	CITATIONS
91	Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macroand Nanometer Scale. Energy & Energy & 2015, 29, 7168-7177.	2.5	79
92	Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash. Minerals (Basel, Switzerland), 2015, 5, 356-366.	0.8	54
93	Petrological and biological studies on some fly and bottom ashes collected at different times from an Indian coal-based captive power plant. Fuel, 2015, 158, 572-581.	3.4	17
94	Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 2015, 152, 19-46.	1.9	142
95	Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews, 2015, 71, 318-349.	1.1	121
96	Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 2015, 70, 1-30.	1.1	189
97	Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. International Journal of Coal Geology, 2015, 144-145, 23-47.	1.9	105
98	Coal modeling using Markov Chain and Monte Carlo simulation: Analysis of microlithotype and lithotype succession. Sedimentary Geology, 2015, 329, 1-11.	1.0	3
99	Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. International Journal of Coal Geology, 2015, 137, 92-110.	1.9	137
100	Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. International Journal of Coal Geology, 2015, 137, 19-37.	1.9	90
101	Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 2015, 50, 159-186.	1.7	287
102	Boron and Strontium Isotopic Characterization of Coal Combustion Residuals: Validation of New Environmental Tracers. Environmental Science & Environmental Tracers. Environmental Science & Environmen	4.6	47
103	Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. International Journal of Coal Geology, 2014, 121, 26-34.	1.9	91
104	Determination of Boron in Coal Using Closed-Vessel Microwave Digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Energy & Energy & 2014, 28, 4517-4522.	2.5	43
105	Petrology, Mineralogy, and Chemistry of Size-Fractioned Fly Ash from the Jungar Power Plant, Inner Mongolia, China, with Emphasis on the Distribution of Rare Earth Elements. Energy &	2.5	119
106	Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 2014, 122, 110-128.	1.9	160
107	Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 2014, 121, 79-97.	1.9	172
108	Notes on the origin of the resinite-rich "pine needle―lithotype of the Cretaceous Cambria coal, Weston County, Wyoming. International Journal of Coal Geology, 2014, 130, 66-69.	1.9	2

#	Article	IF	Citations
109	A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. International Journal of Coal Geology, 2014, 130, 33-52.	1.9	108
110	Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 2014, 121, 53-78.	1.9	203
111	Macrinite and funginite forms in Cretaceous Menefee Formation anthracite, Cerrillos coalfield, New Mexico. International Journal of Coal Geology, 2013, 114, 54-59.	1.9	23
112	Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants. International Journal of Coal Geology, 2013, 116-117, 227-235.	1.9	38
113	Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 2013, 109-110, 77-100.	1.9	143
114	On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 2013, 118, 58-87.	1.9	258
115	Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 2013, 105, 60-84.	1.9	200
116	Macrinite forms in Pennsylvanian coals. International Journal of Coal Geology, 2013, 116-117, 172-181.	1.9	33
117	Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Science of the Total Environment, 2013, 456-457, 95-103.	3.9	88
118	An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. International Journal of Coal Geology, 2013, 114, 44-53.	1.9	57
119	Maceral types in some Permian southern African coals. International Journal of Coal Geology, 2012, 100, 93-107.	1.9	17
120	Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. International Journal of Coal Geology, 2012, 94, 206-213.	1.9	59
121	Illite crystallinity and coal metamorphism for selected central Appalachian coals and shales. International Journal of Coal Geology, 2012, 94, 167-172.	1.9	12
122	Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 2012, 90-91, 72-99.	1.9	238
123	Petrographic examination of coal-combustion fly ash. International Journal of Coal Geology, 2012, 92, 90-97.	1.9	84
124	A critical re-examination of the petrology of the No. 5 Block coal in eastern Kentucky with special attention to the origin of inertinite macerals in the splint lithotypes. International Journal of Coal Geology, 2012, 98, 41-49.	1.9	30
125	Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Science of the Total Environment, 2012, 419, 250-264.	3.9	62
126	Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency. Applied Geochemistry, 2011, 26, 18-27.	1.4	41

#	Article	IF	Citations
127	Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 2011, 282, 29-44.	1.4	258
128	Petrographic, geochemical, and mycological aspects of Miocene coals from the $Nov\tilde{A}_i$ ky and $Handlov\tilde{A}_i$ mining districts, Slovakia. International Journal of Coal Geology, 2011, 87, 268-281.	1.9	42
129	Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals. International Journal of Coal Geology, 2011, 86, 231-240.	1.9	99
130	Revisiting Coos Bay, Oregon: A re-examination of funginiteâ€"huminite relationships in Eocene subbituminous coals. International Journal of Coal Geology, 2011, 85, 34-42.	1.9	41
131	Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite. International Journal of Coal Geology, 2011, 85, 186-190.	1.9	42
132	Splint coals of the Central Appalachians: Petrographic and geochemical facies of the Peach Orchard No. 3 split coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2011, 85, 268-275.	1.9	24
133	Naphthalene and o-Xylene Adsorption onto High Carbon Fly Ash. Journal of Environmental Engineering, ASCE, 2011, 137, 377-387.	0.7	7
134	Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science, 2010, 36, 510-529.	15.8	232
135	Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin. International Journal of Coal Geology, 2010, 81, 169-181.	1.9	73
136	Influence of feed and sampling systems on element partitioning in Kentucky fly ash. International Journal of Coal Geology, 2010, 82, 94-104.	1.9	11
137	Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, PetroÅŸani basin (southern Carpathian Mountains), Romania. International Journal of Coal Geology, 2010, 82, 68-80.	1.9	42
138	Funginite–resinite associations in coal. International Journal of Coal Geology, 2010, 83, 64-72.	1.9	39
139	Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 2009, 77, 260-268.	1.9	61
140	Fossil wood from the middle Cretaceous Moreno Hill Formation: Unique expressions of wood mineralization and implications for the processes of wood preservation. International Journal of Coal Geology, 2009, 79, 1-17.	1.9	34
141	Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology, 2009, 79, 74-82.	1.9	87
142	Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite. International Journal of Coal Geology, 2009, 80, 135-143.	1.9	79
143	Maceral/ microlithotype partitioning with particle size of pulverized coal: Examples from power plants burning Central Appalachian and Illinois basin coals. International Journal of Coal Geology, 2008, 73, 213-218.	1.9	36
144	Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology, 2008, 75, 88-92.	1.9	91

#	Article	IF	Citations
145	Vickers microhardness of telovitrinite and pseudovitrinite from high volatile bituminous Kentucky coals. International Journal of Coal Geology, 2008, 75, 76-80.	1.9	16
146	Tales from a distant swamp: Petrological and paleobotanical clues for the origin of the sand coal lithotype (Mississippian, Valley Fields, Virginia). International Journal of Coal Geology, 2008, 75, 119-126.	1.9	13
147	Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design. International Journal of Coal Geology, 2008, 75, 248-254.	1.9	38
148	Classification of carbon in Canadian fly ashes and their implications in the capture of mercury. Fuel, 2008, 87, 1949-1957.	3.4	48
149	Association of the Sites of Heavy Metals with Nanoscale Carbon in a Kentucky Electrostatic Precipitator Fly Ash. Environmental Science & Earbon 19, 2008, 42, 8471-8477.	4.6	71
150	Discussion on "Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption―by Lu et al Energy & Double 1, 2008, 22, 1055-1058.	2.5	5
151	Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant. Applied Geochemistry, 2007, 22, 2065-2077.	1.4	30
152	The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1433-1437.	2.0	30
153	Major and Minor Element Distribution in Fly Ash from a Coal-Fired Utility Boiler in Kentucky. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 79-95.	1.2	24
154	Influence of maceral content on δ13C and δ15N in a Middle Pennsylvanian coal. Chemical Geology, 2006, 225, 77-90.	1.4	67
155	Petrography, palynology, and paleoecology of the Lower Pennsylvanian Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee. International Journal of Coal Geology, 2006, 67, 17-46.	1.9	11
156	Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee. International Journal of Coal Geology, 2006, 67, 47-78.	1.9	29
157	Thermal stability of mercury captured by ash. Fuel, 2006, 85, 2509-2515.	3.4	18
158	Mercury content of the Springfield coal, Indiana and Kentucky. International Journal of Coal Geology, 2005, 63, 205-227.	1.9	26
159	Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky. International Journal of Coal Geology, 2005, 62, 167-181.	1.9	31
160	Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. International Journal of Coal Geology, 2005, 63, 27-35.	1.9	63
161	Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies. International Journal of Coal Geology, 2005, 62, 223-236.	1.9	35
162	An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash:  Revision and Clarification. Energy & Fuels, 2005, 19, 653-655.	2.5	42

#	Article	IF	Citations
163	Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant. Applied Geochemistry, 2005, 20, 1309-1319.	1.4	34
164	Coal facies studies in the eastern United States. International Journal of Coal Geology, 2004, 58, 3-22.	1.9	10
165	Tracking mercury from the mine to the power plant: geochemistry of the Manchester coal bed, Clay County, Kentucky. International Journal of Coal Geology, 2004, 57, 127-141.	1.9	74
166	Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. International Journal of Coal Geology, 2004, 59, 153-169.	1.9	227
167	From in-situ coal to fly ash: a study of coal mines and power plants from Indiana. International Journal of Coal Geology, 2004, 59, 171-192.	1.9	78
168	Clausthalite in coal. International Journal of Coal Geology, 2003, 53, 219-225.	1.9	94
169	Arsenic and Mercury Partitioning in Fly Ash at a Kentucky Power Plant. Energy & Energy & 2003, 17, 1028-1033.	2.5	48
170	Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of Coal Geology, 2002, 50, 215-245.	1.9	100
171	Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. International Journal of Coal Geology, 2002, 53, 27-42.	1.9	62
172	An Approach toward a Combined Scheme for the Petrographic Classification of Fly Ash. Energy & Energy & Fuels, 2001, 15, 1319-1321.	2.5	54
173	Temporal and spatial variations in fly ash quality. Fuel Processing Technology, 2001, 73, 37-58.	3.7	26
174	Petrology and minor element chemistry of combustion by-products from the co-combustion of coal, tire-derived fuel, and petroleum coke at a western Kentucky cyclone-fired unit. Fuel Processing Technology, 2001, 74, 125-142.	3.7	30
175	Forensic petrology and geochemistry: tracking the source of a coal slurry spill, Lee County, Virginia. International Journal of Coal Geology, 2000, 44, 101-108.	1.9	12
176	Mercury Capture by Distinct Fly Ash Carbon Forms. Energy & Energy & 2000, 14, 224-226.	2. 5	114
177	Mercury Capture by Fly Ash:  Study of the Combustion of a High-Mercury Coal at a Utility Boiler. Energy & Fuels, 2000, 14, 727-733.	2.5	81
178	Intra- and Inter-unit Variation in Fly Ash Petrography and Mercury Adsorption:  Examples from a Western Kentucky Power Station. Energy & Fuels, 2000, 14, 212-216.	2.5	47
179	Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. International Journal of Coal Geology, 1999, 39, 141-153.	1.9	273
180	Cannel coals: implications for classification and terminology. International Journal of Coal Geology, 1999, 41, 157-188.	1.9	18

#	Article	IF	CITATIONS
181	Impact of the conversion to low-NOx combustion on ash characteristics in a utility boiler burning Western US coal. Fuel Processing Technology, 1999, 61, 175-195.	3.7	31
182	Novel Separation of the Differing Forms of Unburned Carbon Present in Fly Ash Using Density Gradient Centrifugation. Energy & Samp; Fuels, 1999, 13, 947-953.	2.5	64
183	Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal. Fuel, 1998, 77, 805-813.	3.4	64
184	Case study of the conversion of tangential- and wall-fired units to low-NOx combustion: Impact on fly ash quality. Waste Management, 1998, 17, 219-229.	3.7	36
185	Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field. Applied Geochemistry, 1997, 12, 281-289.	1.4	52
186	An examination of fly ash carbon and its interactions with air entraining agent. Cement and Concrete Research, 1997, 27, 193-204.	4.6	94
187	Dry triboelectrostatic beneficiation of fly ash. Fuel, 1997, 76, 801-805.	3.4	61
188	Characterization of fly ash from Kentucky power plants. Fuel, 1996, 75, 403-411.	3.4	82
189	Paleoecology of the Springfield Coal Member (Desmoinesian, Illinois Basin) near the Leslie Cemetery paleochannel, southwestern Indiana. International Journal of Coal Geology, 1995, 27, 59-98.	1.9	26
190	Uncertain and treacherous: The cannel coal industry in Kentucky. Nonrenewable Resources, 1995, 4, 310-324.	0.1	4
191	Palynologic, petrographic and geochemical characteristics of the Manchester coal bed in Eastern Kentucky. International Journal of Coal Geology, 1995, 27, 249-278.	1.9	22
192	Lithologic and geochemical investigations of the Fire Clay coal bed, southeastern Kentucky, in the vicinity of sandstone washouts. International Journal of Coal Geology, 1994, 26, 95-115.	1.9	24
193	Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky Coal Field. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106, 287-305.	1.0	71
194	Petrographic and Geochemical Anatomy of Lithotypes from the Blue Gem Coal Bed, Southeastern Kentucky. Energy & Samp; Fuels, 1994, 8, 719-728.	2.5	39
195	Appalachian anthracites. Organic Geochemistry, 1993, 20, 619-642.	0.9	32
196	Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. Organic Geochemistry, 1991, 17, 161-173.	0.9	29
197	Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust Belt: Some New Vitrinite Reflectance Data. Journal of Geology, 1990, 98, 927-942.	0.7	19
198	Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky. International Journal of Coal Geology, 1990, 16, 239-254.	1.9	12

#	Article	IF	CITATION
199	Geochemistry of the Pond Creek coal bed, Eastern Kentucky coalfield. International Journal of Coal Geology, 1989, 11, 205-226.	1.9	84
200	Petrology of the River Gem coal bed, Whitley County, Kentucky. International Journal of Coal Geology, 1989, 11, 227-245.	1.9	28
201	Vitrinite reflectance anisotropy as a tectonic fabric element. Geology, 1981, 9, 165.	2.0	53
202	Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Journal of Soils and Sediments, 0 , , 1 .	1.5	2