
## James C Hower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10610050/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical<br>and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita,<br>2015, 50, 159-186.                          | 1.7  | 287       |
| 2  | Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky.<br>International Journal of Coal Geology, 1999, 39, 141-153.                                                                                                | 1.9  | 273       |
| 3  | Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian<br>coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 2011, 282, 29-44.                                              | 1.4  | 258       |
| 4  | On the fundamental difference between coal rank and coal type. International Journal of Coal<br>Geology, 2013, 118, 58-87.                                                                                                                            | 1.9  | 258       |
| 5  | Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit,<br>Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 2012,<br>90-91, 72-99.                             | 1.9  | 238       |
| 6  | Recognition of peat depositional environments in coal: A review. International Journal of Coal<br>Geology, 2020, 219, 103383.                                                                                                                         | 1.9  | 237       |
| 7  | Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science, 2010, 36, 510-529.                                                                                                                   | 15.8 | 232       |
| 8  | Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. International Journal of Coal Geology, 2004, 59, 153-169.                                                                                      | 1.9  | 227       |
| 9  | Trends in the Rare Earth Element Content of U.SBased Coal Combustion Fly Ashes. Environmental Science & Technology, 2016, 50, 5919-5926.                                                                                                              | 4.6  | 208       |
| 10 | Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde<br>Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 2014, 121, 53-78.                                                   | 1.9  | 203       |
| 11 | Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi<br>Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International<br>Journal of Coal Geology, 2013, 105, 60-84. | 1.9  | 200       |
| 12 | Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Coal Combustion Byproducts. Minerals (Basel, Switzerland), 2016, 6, 32.                                                                                       | 0.8  | 195       |
| 13 | Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang,<br>northwestern China. Ore Geology Reviews, 2015, 70, 1-30.                                                                                     | 1.1  | 189       |
| 14 | Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo<br>Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore<br>Geology Reviews, 2017, 80, 1-17.                     | 1.1  | 188       |
| 15 | Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. International Journal of Coal Geology, 2017, 184, 1-10.                                                                                       | 1.9  | 179       |
| 16 | Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 2014, 121, 79-97.                                                                         | 1.9  | 172       |
| 17 | Valuable elements in Chinese coals: a review. International Geology Review, 2018, 60, 590-620.                                                                                                                                                        | 1.1  | 170       |
| 18 | Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 2014, 122, 110-128.                                        | 1.9  | 160       |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Coal-derived unburned carbons in fly ash: A review. International Journal of Coal Geology, 2017, 179, 11-27.                                                                                                                                                                     | 1.9 | 158       |
| 20 | Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. International Journal of Coal Geology, 2016, 160-161, 73-81.                                                                                                         | 1.9 | 149       |
| 21 | Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance.<br>Earth-Science Reviews, 2017, 175, 44-74.                                                                                                                                | 4.0 | 145       |
| 22 | Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 2016, 29, 60-82.                                                                                                 | 3.0 | 144       |
| 23 | Factors controlling geochemical and mineralogical compositions of coals preserved within marine<br>carbonate successions: A case study from the Heshan Coalfield, southern China. International<br>Journal of Coal Geology, 2013, 109-110, 77-100.                               | 1.9 | 143       |
| 24 | Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu<br>Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal<br>of Coal Geology, 2016, 166, 71-95.                                     | 1.9 | 143       |
| 25 | Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan,<br>southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of<br>Coal Geology, 2015, 152, 19-46.                                                  | 1.9 | 142       |
| 26 | Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine,<br>Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid<br>hydrothermal solutions. International Journal of Coal Geology, 2015, 137, 92-110. | 1.9 | 137       |
| 27 | Organic associations of non-mineral elements in coal: A review. International Journal of Coal<br>Geology, 2020, 218, 103347.                                                                                                                                                     | 1.9 | 128       |
| 28 | Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli<br>Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge<br>ore deposit. Ore Geology Reviews, 2015, 71, 318-349.                      | 1.1 | 121       |
| 29 | Petrology, Mineralogy, and Chemistry of Size-Fractioned Fly Ash from the Jungar Power Plant, Inner<br>Mongolia, China, with Emphasis on the Distribution of Rare Earth Elements. Energy & Fuels, 2014,<br>28, 1502-1514.                                                         | 2.5 | 119       |
| 30 | Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 2021, 222, 103815.                                                                                                                                                                        | 4.0 | 115       |
| 31 | Mercury Capture by Distinct Fly Ash Carbon Forms. Energy & Fuels, 2000, 14, 224-226.                                                                                                                                                                                             | 2.5 | 114       |
| 32 | A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. International Journal of Coal Geology, 2014, 130, 33-52.                                                                                            | 1.9 | 108       |
| 33 | Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. International Journal of Coal Geology, 2015, 144-145, 23-47.                                                                                         | 1.9 | 105       |
| 34 | Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. International<br>Journal of Coal Geology, 2018, 195, 75-83.                                                                                                                                | 1.9 | 103       |
| 35 | Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 2018, 196, 106-114.                                                                                                     | 1.9 | 103       |
| 36 | Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of<br>Coal Geology, 2002, 50, 215-245.                                                                                                                                            | 1.9 | 100       |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod<br>transformations of degraded macerals. International Journal of Coal Geology, 2011, 86, 231-240.                                                                | 1.9 | 99        |
| 38 | An examination of fly ash carbon and its interactions with air entraining agent. Cement and Concrete Research, 1997, 27, 193-204.                                                                                                                       | 4.6 | 94        |
| 39 | Clausthalite in coal. International Journal of Coal Geology, 2003, 53, 219-225.                                                                                                                                                                         | 1.9 | 94        |
| 40 | Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a<br>Kentucky coal. International Journal of Coal Geology, 2008, 75, 88-92.                                                                                 | 1.9 | 91        |
| 41 | Geochemistry and nano-mineralogy of two medium-sulfur northeast Indian coals. International<br>Journal of Coal Geology, 2014, 121, 26-34.                                                                                                               | 1.9 | 91        |
| 42 | Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from<br>Assam (North-east India): a multi-faceted analytical approach. International Journal of Coal Geology,<br>2015, 137, 19-37.                          | 1.9 | 90        |
| 43 | Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Science of the Total Environment, 2013, 456-457, 95-103.                                                                                                     | 3.9 | 88        |
| 44 | Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane<br>Processes. Environmental Science & Technology, 2019, 53, 4490-4499.                                                                                      | 4.6 | 88        |
| 45 | Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry,<br>Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology, 2009, 79,<br>74-82.                                      | 1.9 | 87        |
| 46 | Geochemistry of the Pond Creek coal bed, Eastern Kentucky coalfield. International Journal of Coal<br>Geology, 1989, 11, 205-226.                                                                                                                       | 1.9 | 84        |
| 47 | Petrographic examination of coal-combustion fly ash. International Journal of Coal Geology, 2012, 92, 90-97.                                                                                                                                            | 1.9 | 84        |
| 48 | Characterization of fly ash from Kentucky power plants. Fuel, 1996, 75, 403-411.                                                                                                                                                                        | 3.4 | 82        |
| 49 | Mercury Capture by Fly Ash:  Study of the Combustion of a High-Mercury Coal at a Utility Boiler.<br>Energy & Fuels, 2000, 14, 727-733.                                                                                                                  | 2.5 | 81        |
| 50 | Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern<br>China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin.<br>Ore Geology Reviews, 2017, 80, 116-140.      | 1.1 | 80        |
| 51 | Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite. International Journal of Coal Geology, 2009, 80, 135-143.                                                                      | 1.9 | 79        |
| 52 | Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of<br>High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macro-<br>and Nanometer Scale. Energy & Fuels, 2015, 29, 7168-7177. | 2.5 | 79        |
| 53 | From in-situ coal to fly ash: a study of coal mines and power plants from Indiana. International<br>Journal of Coal Geology, 2004, 59, 171-192.                                                                                                         | 1.9 | 78        |
| 54 | Tracking mercury from the mine to the power plant: geochemistry of the Manchester coal bed, Clay<br>County, Kentucky. International Journal of Coal Geology, 2004, 57, 127-141.                                                                         | 1.9 | 74        |

| #  | Article                                                                                                                                                                                                                                         | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the<br>Appalachian basin. International Journal of Coal Geology, 2010, 81, 169-181.                                                                       | 1.9  | 73        |
| 56 | Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky Coal Field.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106, 287-305.                                                                               | 1.0  | 71        |
| 57 | Association of the Sites of Heavy Metals with Nanoscale Carbon in a Kentucky Electrostatic<br>Precipitator Fly Ash. Environmental Science & Technology, 2008, 42, 8471-8477.                                                                    | 4.6  | 71        |
| 58 | Influence of maceral content on δ13C and δ15N in a Middle Pennsylvanian coal. Chemical Geology, 2006,<br>225, 77-90.                                                                                                                            | 1.4  | 67        |
| 59 | Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal. Fuel, 1998, 77, 805-813.                                                                        | 3.4  | 64        |
| 60 | Novel Separation of the Differing Forms of Unburned Carbon Present in Fly Ash Using Density<br>Gradient Centrifugation. Energy & Fuels, 1999, 13, 947-953.                                                                                      | 2.5  | 64        |
| 61 | A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Progress in Energy and Combustion Science, 2022, 88, 100954.                                               | 15.8 | 64        |
| 62 | Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt<br>Formation, eastern Kentucky. International Journal of Coal Geology, 2005, 63, 27-35.                                                          | 1.9  | 63        |
| 63 | Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky<br>coalfield, USA. International Journal of Coal Geology, 2002, 53, 27-42.                                                                       | 1.9  | 62        |
| 64 | Applied investigation on the interaction of hazardous elements binding on ultrafine and<br>nanoparticles in Chinese anthracite-derived fly ash. Science of the Total Environment, 2012, 419,<br>250-264.                                        | 3.9  | 62        |
| 65 | Dry triboelectrostatic beneficiation of fly ash. Fuel, 1997, 76, 801-805.                                                                                                                                                                       | 3.4  | 61        |
| 66 | Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua,<br>Indonesia. International Journal of Coal Geology, 2009, 77, 260-268.                                                                      | 1.9  | 61        |
| 67 | A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of<br>H-O isotopes. Lithos, 2018, 302-303, 359-369.                                                                                              | 0.6  | 61        |
| 68 | Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County,<br>Kentucky. International Journal of Coal Geology, 2012, 94, 206-213.                                                                          | 1.9  | 59        |
| 69 | An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: Paleopathology of faunal<br>and fungal invasions into wood and the recognizable clues for their activity. International Journal<br>of Coal Geology, 2013, 114, 44-53. | 1.9  | 57        |
| 70 | An Approach toward a Combined Scheme for the Petrographic Classification of Fly Ash. Energy &<br>Fuels, 2001, 15, 1319-1321.                                                                                                                    | 2.5  | 54        |
| 71 | Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion<br>Fly Ash. Minerals (Basel, Switzerland), 2015, 5, 356-366.                                                                                 | 0.8  | 54        |
| 72 | Vitrinite reflectance anisotropy as a tectonic fabric element. Geology, 1981, 9, 165.                                                                                                                                                           | 2.0  | 53        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by<br>X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. ACS Omega, 2018, 3,<br>17637-17645.                | 1.6 | 53        |
| 74 | Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare<br>earth element evidence for high-temperature solutions. International Journal of Coal Geology, 2018,<br>197, 84-114. | 1.9 | 53        |
| 75 | Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal<br>field. Applied Geochemistry, 1997, 12, 281-289.                                                                         | 1.4 | 52        |
| 76 | Rare earth minerals in a "no tonstein―section of the Dean (Fire Clay) coal, Knox County, Kentucky.<br>International Journal of Coal Geology, 2018, 193, 73-86.                                                              | 1.9 | 52        |
| 77 | Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Science of the Total Environment, 2019, 663, 177-188.                                                              | 3.9 | 51        |
| 78 | Arsenic and Mercury Partitioning in Fly Ash at a Kentucky Power Plant. Energy & Fuels, 2003, 17, 1028-1033.                                                                                                                 | 2.5 | 48        |
| 79 | Classification of carbon in Canadian fly ashes and their implications in the capture of mercury. Fuel, 2008, 87, 1949-1957.                                                                                                 | 3.4 | 48        |
| 80 | Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler. Environmental Pollution, 2018, 242, 1950-1960.                           | 3.7 | 48        |
| 81 | Intra- and Inter-unit Variation in Fly Ash Petrography and Mercury Adsorption:  Examples from a<br>Western Kentucky Power Station. Energy & Fuels, 2000, 14, 212-216.                                                       | 2.5 | 47        |
| 82 | Boron and Strontium Isotopic Characterization of Coal Combustion Residuals: Validation of New Environmental Tracers. Environmental Science & amp; Technology, 2014, 48, 14790-14798.                                        | 4.6 | 47        |
| 83 | Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western<br>Guizhou, China and the lack of critical-elements. International Journal of Coal Geology, 2020, 223,<br>103468.               | 1.9 | 46        |
| 84 | Determination of Boron in Coal Using Closed-Vessel Microwave Digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Energy & Fuels, 2014, 28, 4517-4522.                                                      | 2.5 | 43        |
| 85 | Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. Coal Combustion and Gasification Products, 2017, 9, 22-33.                                                                            | 1.0 | 43        |
| 86 | An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash:  Revision and Clarification. Energy & Fuels, 2005, 19, 653-655.                                                                        | 2.5 | 42        |
| 87 | Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, PetroÅŸani basin<br>(southern Carpathian Mountains), Romania. International Journal of Coal Geology, 2010, 82, 68-80.                        | 1.9 | 42        |
| 88 | Petrographic, geochemical, and mycological aspects of Miocene coals from the NovÃiky and HandlovÃi<br>mining districts, Slovakia. International Journal of Coal Geology, 2011, 87, 268-281.                                 | 1.9 | 42        |
| 89 | Notes on the origin of inertinite macerals in coals: Funginite associations with cutinite and suberinite. International Journal of Coal Geology, 2011, 85, 186-190.                                                         | 1.9 | 42        |
| 90 | Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency. Applied Geochemistry, 2011, 26, 18-27.                                                     | 1.4 | 41        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Revisiting Coos Bay, Oregon: A re-examination of funginite–huminite relationships in Eocene<br>subbituminous coals. International Journal of Coal Geology, 2011, 85, 34-42.                                                  | 1.9 | 41        |
| 92  | Rare earth element associations in the Kentucky State University stoker ash. International Journal of<br>Coal Geology, 2018, 189, 75-82.                                                                                     | 1.9 | 41        |
| 93  | Petrographic and Geochemical Anatomy of Lithotypes from the Blue Gem Coal Bed, Southeastern<br>Kentucky. Energy & Fuels, 1994, 8, 719-728.                                                                                   | 2.5 | 39        |
| 94  | Funginite–resinite associations in coal. International Journal of Coal Geology, 2010, 83, 64-72.                                                                                                                             | 1.9 | 39        |
| 95  | Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design. International Journal of Coal Geology, 2008, 75, 248-254.                                                        | 1.9 | 38        |
| 96  | Influence of surface area properties on mercury capture behaviour of coal fly ashes from some<br>Bulgarian power plants. International Journal of Coal Geology, 2013, 116-117, 227-235.                                      | 1.9 | 38        |
| 97  | Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel, 2020, 279, 118542.                                                                                                                            | 3.4 | 37        |
| 98  | Case study of the conversion of tangential- and wall-fired units to low-NOx combustion: Impact on fly ash quality. Waste Management, 1998, 17, 219-229.                                                                      | 3.7 | 36        |
| 99  | Maceral/ microlithotype partitioning with particle size of pulverized coal: Examples from power<br>plants burning Central Appalachian and Illinois basin coals. International Journal of Coal Geology,<br>2008, 73, 213-218. | 1.9 | 36        |
| 100 | A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products. Fuel, 2018, 228, 297-308.                                                              | 3.4 | 36        |
| 101 | Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies. International<br>Journal of Coal Geology, 2005, 62, 223-236.                                                                          | 1.9 | 35        |
| 102 | Size-Dependent Variations in Fly Ash Trace Element Chemistry: Examples from a Kentucky Power Plant<br>and with Emphasis on Rare Earth Elements. Energy & Fuels, 2017, 31, 438-447.                                           | 2.5 | 35        |
| 103 | Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western<br>Kentucky power plant. Applied Geochemistry, 2005, 20, 1309-1319.                                                           | 1.4 | 34        |
| 104 | Fossil wood from the middle Cretaceous Moreno Hill Formation: Unique expressions of wood mineralization and implications for the processes of wood preservation. International Journal of Coal Geology, 2009, 79, 1-17.      | 1.9 | 34        |
| 105 | Petrology and chemistry of sized Pennsylvania anthracite, with emphasis on the distribution of rare earth elements. Fuel, 2016, 185, 305-315.                                                                                | 3.4 | 34        |
| 106 | Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel, 2019, 255, 115710.                                                                | 3.4 | 34        |
| 107 | Macrinite forms in Pennsylvanian coals. International Journal of Coal Geology, 2013, 116-117, 172-181.                                                                                                                       | 1.9 | 33        |
| 108 | Appalachian anthracites. Organic Geochemistry, 1993, 20, 619-642.                                                                                                                                                            | 0.9 | 32        |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes<br>Derived from Eastern Kentucky Coals. Minerals (Basel, Switzerland), 2020, 10, 105.                                                                                    | 0.8 | 32        |
| 110 | Impact of the conversion to low-NOx combustion on ash characteristics in a utility boiler burning Western US coal. Fuel Processing Technology, 1999, 61, 175-195.                                                                                                         | 3.7 | 31        |
| 111 | Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern<br>Martin counties, Kentucky. International Journal of Coal Geology, 2005, 62, 167-181.                                                                                    | 1.9 | 31        |
| 112 | Petrology and minor element chemistry of combustion by-products from the co-combustion of coal,<br>tire-derived fuel, and petroleum coke at a western Kentucky cyclone-fired unit. Fuel Processing<br>Technology, 2001, 74, 125-142.                                      | 3.7 | 30        |
| 113 | Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant. Applied Geochemistry, 2007, 22, 2065-2077.                                                                              | 1.4 | 30        |
| 114 | The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X.<br>Sun. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1433-1437.                                                                 | 2.0 | 30        |
| 115 | A critical re-examination of the petrology of the No. 5 Block coal in eastern Kentucky with special attention to the origin of inertinite macerals in the splint lithotypes. International Journal of Coal Geology, 2012, 98, 41-49.                                      | 1.9 | 30        |
| 116 | Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky. Organic<br>Geochemistry, 1991, 17, 161-173.                                                                                                                                 | 0.9 | 29        |
| 117 | Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County,<br>Cumberland Plateau, southeast Tennessee. International Journal of Coal Geology, 2006, 67, 47-78.                                                                          | 1.9 | 29        |
| 118 | A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite<br>(Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal<br>of Coal Geology, 2021, 237, 103691.                             | 1.9 | 29        |
| 119 | Geological factors controlling variations in the mineralogical and elemental compositions of Late<br>Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. International Journal of<br>Coal Geology, 2021, 247, 103855.                                 | 1.9 | 29        |
| 120 | Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan<br>Basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews,<br>2021, 139, 104582.                                            | 1.1 | 29        |
| 121 | Petrology of the River Gem coal bed, Whitley County, Kentucky. International Journal of Coal<br>Geology, 1989, 11, 227-245.                                                                                                                                               | 1.9 | 28        |
| 122 | Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites.<br>Fuel, 2020, 263, 116740.                                                                                                                                            | 3.4 | 28        |
| 123 | Ponded and Landfilled Fly Ash as a Source of Rare Earth Elements from a Kentucky Power Plant. Coal<br>Combustion and Gasification Products, 2017, 9, 1-21.                                                                                                                | 1.0 | 28        |
| 124 | Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the<br>Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating<br>seawater and exfiltrating groundwater. Fuel, 2021, 300, 120948. | 3.4 | 27        |
| 125 | Paleoecology of the Springfield Coal Member (Desmoinesian, Illinois Basin) near the Leslie Cemetery paleochannel, southwestern Indiana. International Journal of Coal Geology, 1995, 27, 59-98.                                                                           | 1.9 | 26        |
| 126 | Temporal and spatial variations in fly ash quality. Fuel Processing Technology, 2001, 73, 37-58.                                                                                                                                                                          | 3.7 | 26        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Mercury content of the Springfield coal, Indiana and Kentucky. International Journal of Coal Geology, 2005, 63, 205-227.                                                                                                                           | 1.9 | 26        |
| 128 | Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environmental Sciences: Processes and Impacts, 2018, 20, 1390-1403.                                                                                              | 1.7 | 26        |
| 129 | Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental<br>implication. International Journal of Coal Geology, 2020, 217, 103344.                                                                           | 1.9 | 26        |
| 130 | Lithologic and geochemical investigations of the Fire Clay coal bed, southeastern Kentucky, in the vicinity of sandstone washouts. International Journal of Coal Geology, 1994, 26, 95-115.                                                        | 1.9 | 24        |
| 131 | Major and Minor Element Distribution in Fly Ash from a Coal-Fired Utility Boiler in Kentucky. Energy<br>Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 79-95.                                                         | 1.2 | 24        |
| 132 | Splint coals of the Central Appalachians: Petrographic and geochemical facies of the Peach Orchard<br>No. 3 split coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2011,<br>85, 268-275.                       | 1.9 | 24        |
| 133 | Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue<br>Gem coal, Knox County, Kentucky. International Journal of Coal Geology, 2018, 192, 73-82.                                                    | 1.9 | 24        |
| 134 | Macrinite and funginite forms in Cretaceous Menefee Formation anthracite, Cerrillos coalfield, New<br>Mexico. International Journal of Coal Geology, 2013, 114, 54-59.                                                                             | 1.9 | 23        |
| 135 | Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Applied Geochemistry, 2020, 117, 104602.                                                  | 1.4 | 23        |
| 136 | The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As<br>bituminous coal combustion: Experimental and theoretical investigations. Journal of Hazardous<br>Materials, 2021, 415, 125610.             | 6.5 | 23        |
| 137 | Palynologic, petrographic and geochemical characteristics of the Manchester coal bed in Eastern<br>Kentucky. International Journal of Coal Geology, 1995, 27, 249-278.                                                                             | 1.9 | 22        |
| 138 | Aspects of rare earth element enrichment in Central Appalachian coals. Applied Geochemistry, 2020, 120, 104676.                                                                                                                                    | 1.4 | 22        |
| 139 | Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal,<br>Kentucky. Minerals (Basel, Switzerland), 2019, 9, 206.                                                                                         | 0.8 | 21        |
| 140 | Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky.<br>International Journal of Coal Geology, 2020, 220, 103413.                                                                                             | 1.9 | 21        |
| 141 | Nitrogen isotopic compositions in NH4+-mineral-bearing coal: Origin and isotope fractionation.<br>Chemical Geology, 2021, 559, 119946.                                                                                                             | 1.4 | 21        |
| 142 | Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: implications for palaeoclimate and sedimentary conditions. Organic Geochemistry, 2020, 149, 104103. | 0.9 | 20        |
| 143 | Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust<br>Belt: Some New Vitrinite Reflectance Data. Journal of Geology, 1990, 98, 927-942.                                                              | 0.7 | 19        |
| 144 | Distribution of rare earth elements in fly ash derived from the combustion of Illinois Basin coals.<br>Fuel, 2021, 289, 119990.                                                                                                                    | 3.4 | 19        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Cannel coals: implications for classification and terminology. International Journal of Coal Geology, 1999, 41, 157-188.                                                                            | 1.9 | 18        |
| 146 | Thermal stability of mercury captured by ash. Fuel, 2006, 85, 2509-2515.                                                                                                                            | 3.4 | 18        |
| 147 | Rare Earth-bearing particles in fly ash carbons: Examples from the combustion of eastern Kentucky coals. Energy Geoscience, 2021, 2, 90-98.                                                         | 1.3 | 18        |
| 148 | Distribution of rare earth elements in the pilot-scale processing of fly ashes derived from eastern<br>Kentucky coals: Comparisons of the feed and processed ashes. Fuel, 2021, 295, 120562.        | 3.4 | 18        |
| 149 | Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin,<br>China. Ore Geology Reviews, 2022, 144, 104848.                                              | 1.1 | 18        |
| 150 | Intrinsic characteristics of coal combustion residues and their environmental impacts: A case study for Bangladesh. Fuel, 2022, 324, 124711.                                                        | 3.4 | 18        |
| 151 | Maceral types in some Permian southern African coals. International Journal of Coal Geology, 2012, 100, 93-107.                                                                                     | 1.9 | 17        |
| 152 | Petrological and biological studies on some fly and bottom ashes collected at different times from an Indian coal-based captive power plant. Fuel, 2015, 158, 572-581.                              | 3.4 | 17        |
| 153 | Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and<br>Varna thermoelectric power plants, Bulgaria. Fuel, 2016, 186, 674-684.                         | 3.4 | 17        |
| 154 | Impact of coal source changes on mercury content in fly ash: Examples from a Kentucky power plant.<br>International Journal of Coal Geology, 2017, 170, 2-6.                                        | 1.9 | 17        |
| 155 | Geochemistry and Nanomineralogy of Feed Coals and Their Coal Combustion Residues from Two<br>Different Coal-Based Industries in Northeast India. Energy & Fuels, 2018, 32, 3697-3708.               | 2.5 | 17        |
| 156 | Mineralogy and geochemistry of the Palaeogene low-rank coal from the Baise Coalfield, Guangxi<br>Province, China. International Journal of Coal Geology, 2019, 214, 103282.                         | 1.9 | 17        |
| 157 | Vickers microhardness of telovitrinite and pseudovitrinite from high volatile bituminous Kentucky coals. International Journal of Coal Geology, 2008, 75, 76-80.                                    | 1.9 | 16        |
| 158 | Characterization of stoker ash from the combustion of high-lanthanide coal at a Kentucky bourbon<br>distillery. International Journal of Coal Geology, 2019, 213, 103260.                           | 1.9 | 16        |
| 159 | Distribution of rare earth elements and other critical elements in beneficiated Pennsylvania anthracites. Fuel, 2021, 304, 121400.                                                                  | 3.4 | 16        |
| 160 | Chemistry and petrology of paired feed coal and combustion ash from anthracite-burning stoker boilers. Fuel, 2017, 199, 438-446.                                                                    | 3.4 | 15        |
| 161 | Petrology and palynology of the Middle Pennsylvanian Leatherwood coal bed, Eastern Kentucky:<br>Indications for depositional environments. International Journal of Coal Geology, 2017, 181, 23-38. | 1.9 | 14        |
| 162 | Phyteral perspectives: Every maceral tells a story. International Journal of Coal Geology, 2021, 247, 103849.                                                                                       | 1.9 | 14        |

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Mineralogical and geochemical characteristics of tonsteins from the Middle Jurassic Yan'an<br>Formation, Ordos Basin, North China. International Journal of Coal Geology, 2022, 253, 103968.                                                                                                  | 1.9 | 14        |
| 164 | Tales from a distant swamp: Petrological and paleobotanical clues for the origin of the sand coal<br>lithotype (Mississippian, Valley Fields, Virginia). International Journal of Coal Geology, 2008, 75, 119-126.                                                                            | 1.9 | 13        |
| 165 | Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined<br>on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky. International<br>Journal of Coal Geology, 2016, 160-161, 63-72.                                       | 1.9 | 13        |
| 166 | Signatures of rare earth element distributions in fly ash derived from the combustion of Central Appalachian, Illinois, and Powder River basin coals. Fuel, 2021, 301, 121048.                                                                                                                | 3.4 | 13        |
| 167 | Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky. International Journal of Coal<br>Geology, 1990, 16, 239-254.                                                                                                                                                              | 1.9 | 12        |
| 168 | Forensic petrology and geochemistry: tracking the source of a coal slurry spill, Lee County, Virginia.<br>International Journal of Coal Geology, 2000, 44, 101-108.                                                                                                                           | 1.9 | 12        |
| 169 | Illite crystallinity and coal metamorphism for selected central Appalachian coals and shales.<br>International Journal of Coal Geology, 2012, 94, 167-172.                                                                                                                                    | 1.9 | 12        |
| 170 | Distinction of strontium isotope ratios between water-soluble and bulk coal fly ash from the United States. International Journal of Coal Geology, 2020, 222, 103464.                                                                                                                         | 1.9 | 12        |
| 171 | Petrography, palynology, and paleoecology of the Lower Pennsylvanian Bon Air coal, Franklin County,<br>Cumberland Plateau, southeast Tennessee. International Journal of Coal Geology, 2006, 67, 17-46.                                                                                       | 1.9 | 11        |
| 172 | Influence of feed and sampling systems on element partitioning in Kentucky fly ash. International<br>Journal of Coal Geology, 2010, 82, 94-104.                                                                                                                                               | 1.9 | 11        |
| 173 | Zeolite and associated mineral occurrences in high-sulphur coals from the middle Miocene upper<br>coal seam from underground mines in the ‡ayirhan coalfield, (Beypazarı, Central Turkey).<br>International Journal of Coal Geology, 2022, 256, 104010.                                       | 1.9 | 11        |
| 174 | Coal facies studies in the eastern United States. International Journal of Coal Geology, 2004, 58, 3-22.                                                                                                                                                                                      | 1.9 | 10        |
| 175 | Estimating REY content of eastern Kentucky coal samples based on their associated ash elements.<br>Journal of Rare Earths, 2018, 36, 1234-1238.                                                                                                                                               | 2.5 | 10        |
| 176 | Mercury stable isotope fractionation during gaseous elemental mercury adsorption onto coal fly ash<br>particles: Experimental and field observations. Journal of Hazardous Materials, 2021, 405, 124280.                                                                                      | 6.5 | 10        |
| 177 | Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel, 2021, 291, 120122.                                                                                                                                                                             | 3.4 | 10        |
| 178 | Mississippian (Serpukhovian; Chesterian Stage) coals from the Fluorspar District, Crittenden and<br>Caldwell counties, Kentucky: Petrological and palynological compositions and their indications for<br>peat-producing ecosystems. International Journal of Coal Geology, 2017, 174, 23-30. | 1.9 | 8         |
| 179 | Palynology, organic petrology and geochemistry of the Bell coal bed in Western Kentucky, Eastern<br>Interior (Illinois) Basin, USA. International Journal of Coal Geology, 2019, 213, 103264.                                                                                                 | 1.9 | 8         |
| 180 | Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. Fuel, 2021, 304, 121468.                                                                                                                            | 3.4 | 8         |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Elemental geochemistry and organic facies of selected cretaceous coals from the Benue Trough basin<br>in Nigeria: Implication for paleodepositional environments. Marine and Petroleum Geology, 2022, 137,<br>105490.                            | 1.5 | 8         |
| 182 | Naphthalene and o-Xylene Adsorption onto High Carbon Fly Ash. Journal of Environmental Engineering, ASCE, 2011, 137, 377-387.                                                                                                                    | 0.7 | 7         |
| 183 | History of applied coal petrology in the United States. IV. Reflections on the centennial of the<br>introduction of coal petrology to North America. International Journal of Coal Geology, 2020, 229,<br>103576.                                | 1.9 | 7         |
| 184 | Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky.<br>International Journal of Coal Science and Technology, 2020, 7, 633-651.                                                                         | 2.7 | 7         |
| 185 | Soft modelling of the Hardgrove grindability index of bituminous coals: An overview. International<br>Journal of Coal Geology, 2021, 247, 103846.                                                                                                | 1.9 | 7         |
| 186 | Petrology of the Fire Clay coal, Bear Branch, Perry County, Kentucky. International Journal of Coal<br>Geology, 2021, 249, 103891.                                                                                                               | 1.9 | 7         |
| 187 | Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and<br>macrinite (Cretaceous, Inner Mongolia, China). International Journal of Coal Geology, 2017, 179, 60-71.                                         | 1.9 | 6         |
| 188 | Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui,<br>China: Discussion. Ore Geology Reviews, 2018, 102, 937-939.                                                                              | 1,1 | 6         |
| 189 | Ultrafine Mineral Associations in Superhigh-Organic-Sulfur Kentucky Coals. ACS Omega, 2018, 3, 12179-12187.                                                                                                                                      | 1.6 | 6         |
| 190 | Comments on Geochemical Characteristics of Rare-Metal, Rare-Scattered, and Rare-Earth Elements and<br>Minerals in the Late Permian Coals from the Moxinpo Mine, Chongqing, China. Energy & Fuels,<br>2018, 32, 8891-8894.                        | 2.5 | 6         |
| 191 | Estimation of heavy and light rare earth elements of coal by intelligent methods. Energy Sources, Part<br>A: Recovery, Utilization and Environmental Effects, 2021, 43, 70-79.                                                                   | 1.2 | 6         |
| 192 | Petrology, palynology, and geochemistry of the Pond Creek coal (Pennsylvanian, Duckmantian), Pike<br>County, Kentucky: Overprints of penecontemporaneous tectonism and peat doming. International<br>Journal of Coal Geology, 2022, 258, 104027. | 1.9 | 6         |
| 193 | Discussion on "Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their<br>Relationship to Mercury Adsorption―by Lu et al Energy & Fuels, 2008, 22, 1055-1058.                                                             | 2.5 | 5         |
| 194 | Uncertain and treacherous: The cannel coal industry in Kentucky. Nonrenewable Resources, 1995, 4, 310-324.                                                                                                                                       | 0.1 | 4         |
| 195 | Distribution of Rare Earth Elements in the Illinois Basin Coals. Mining, Metallurgy and Exploration, 2021, 38, 1645-1663.                                                                                                                        | 0.4 | 4         |
| 196 | Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel, 2022, 313, 123054.                                                                                                | 3.4 | 4         |
| 197 | Coal modeling using Markov Chain and Monte Carlo simulation: Analysis of microlithotype and lithotype succession. Sedimentary Geology, 2015, 329, 1-11.                                                                                          | 1.0 | 3         |
| 198 | Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Applied<br>Geochemistry, 2022, 136, 105150.                                                                                                              | 1.4 | 3         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Notes on the origin of the resinite-rich "pine needle―lithotype of the Cretaceous Cambria coal,<br>Weston County, Wyoming. International Journal of Coal Geology, 2014, 130, 66-69.                                         | 1.9 | 2         |
| 200 | Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Journal of Soils and Sediments, 0, , 1.                                   | 1.5 | 2         |
| 201 | Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle<br>Benue Trough Basin, Nigeria: Implication for coal depositional environments. Energy Geoscience, 2022,<br>3, 300-313. | 1.3 | 2         |
| 202 | Petrology of the Pittsburgh coalbed (Gzhelian (Stephanian C), Monongahela Group/Formation) in<br>Pennsylvania, West Virginia, and Ohio. International Journal of Coal Geology, 2022, 249, 103907.                           | 1.9 | 0         |