
Charles C Church

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10605351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Dependence of Glomerular Capillary Hemorrhage Induced by Contrast Enhanced Diagnostic Ultrasound on Microbubble Diameter. Ultrasound in Medicine and Biology, 2018, 44, 613-621.	0.7	10
2	A Two-Criterion Model for Microvascular Bio-Effects Induced InÂVivo by Contrast Microbubbles Exposed to Medical Ultrasound. Ultrasound in Medicine and Biology, 2016, 42, 1385-1398.	0.7	11
3	Comparison of Thermal Safety Practice Guidelines forÂDiagnostic Ultrasound Exposures. Ultrasound in Medicine and Biology, 2016, 42, 345-357.	0.7	25
4	A Theoretical Study of Inertial Cavitation from Acoustic Radiation Force Impulse Imaging and Implications for the Mechanical Index1. Ultrasound in Medicine and Biology, 2015, 41, 472-485.	0.7	38
5	Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment. Journal of Ultrasound in Medicine, 2015, 34, 1-41.	0.8	48
6	Fundamentals of Cavitation. , 2015, , 1-46.		5
7	Arrhenius thermodynamics and birth defects: Chemical teratogen synergy. Untested, testable, and projected relevance. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 50-60.	3.6	5
8	Should the mechanical index be revised for ARFI imaging?. , 2012, 2012, 17-20.		5
9	The effect of static pressure on the strength of inertial cavitation events. Journal of the Acoustical Society of America, 2012, 132, 2286-2291.	0.5	19
10	The effect of static pressure on the inertial cavitation threshold. Journal of the Acoustical Society of America, 2012, 132, 728-737.	0.5	32
11	Transient cavitation in high-quality-factor resonators at high static pressures. Journal of the Acoustical Society of America, 2010, 127, 3456-3465.	0.5	44
12	Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist. Journal of Ultrasound in Medicine, 2009, 28, 139-150.	0.8	216
13	The Risk of Exposure to Diagnostic Ultrasound in Postnatal Subjects. Journal of Ultrasound in Medicine, 2008, 27, 565-592.	0.8	79
14	Thermal Dose and the Probability of Adverse Effects from HIFU. AIP Conference Proceedings, 2007, , .	0.3	5
15	Fetal thermal dose considerations during the obstetrician's watch: Implications for the pediatrician's observations. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 135-143.	3.6	9
16	Evaluation of the Threshold for Lung Hemorrhage by Diagnostic Ultrasound and a Proposed New Safety Index. Ultrasound in Medicine and Biology, 2007, 33, 810-818.	0.7	31
17	A Proposal to Clarify the Relationship Between the Thermal Index and the Corresponding Risk to the Patient. Ultrasound in Medicine and Biology, 2007, 33, 1489-1494.	0.7	6
18	Quantification of risk from fetal exposure to diagnostic ultrasound. Progress in Biophysics and Molecular Biology, 2007, 93, 331-353.	1.4	66

CHARLES C CHURCH

#	Article	IF	CITATIONS
19	A simple viscoelastic model for soft tissues the frequency range 6-20 MHz. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1404-1411.	1.7	25
20	Theoretical investigation of bubble heating in soft tissue. AIP Conference Proceedings, 2006, , .	0.3	0
21	The activation of tissue factor by high intensity focused ultrasound—a pathway to acoustic-biochemical hemostasis. AIP Conference Proceedings, 2006, , .	0.3	0
22	A Theoretical Study of Gas Bubble Dynamics in Tissue. AIP Conference Proceedings, 2006, , .	0.3	10
23	Frequency, pulse length, and the mechanical index. Acoustics Research Letters Online: ARLO, 2005, 6, 162-168.	0.7	59
24	A new perspective on hyperthermia-induced birth defects: The role of activation energy and its relation to obstetric ultrasound. Journal of Thermal Biology, 2005, 30, 400-409.	1.1	14
25	A model for the dynamics of gas bubbles in soft tissue. Journal of the Acoustical Society of America, 2005, 118, 3595-3606.	0.5	186
26	Nonlinear dynamics of gas bubbles in viscoelastic media. Acoustics Research Letters Online: ARLO, 2005, 6, 151-156.	0.7	30
27	A theoretical study of acoustic cavitation produced by "positive-only―and "negative-only―pressure waves in relation to in vivo studies. Ultrasound in Medicine and Biology, 2003, 29, 319-330.	0.7	9
28	Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound in Medicine and Biology, 2002, 28, 1349-1364.	0.7	116
29	"Stable―inertial cavitation. Ultrasound in Medicine and Biology, 2001, 27, 1435-1437.	0.7	69
30	The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. Journal of the Acoustical Society of America, 1995, 97, 1510-1521.	0.5	612
31	Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 1992, 91, 3166-3183.	0.5	694
32	Confirmation of an ultrasound-induced mutation in two in-vitro mammalian cell lines. Ultrasound in Medicine and Biology, 1990, 16, 699-705.	0.7	30
33	An explanation for the decrease in cell lysis in a rotating tube with increasing ultrasound intensity. Ultrasound in Medicine and Biology, 1989, 15, 67-72.	0.7	13
34	A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. Journal of the Acoustical Society of America, 1989, 86, 215-227.	0.5	278
35	A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion. Journal of the Acoustical Society of America, 1988, 84, 1758-1764.	0.5	28
36	Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. Journal of the Acoustical Society of America, 1988, 83, 2210-2217.	0.5	99

CHARLES C CHURCH

#	Article	IF	CITATIONS
37	Transient pulsations of small gas bubbles in water. Journal of the Acoustical Society of America, 1988, 84, 985-998.	0.5	121
38	A mechanism for the generation of cavitation maxima by pulsed ultrasound. Journal of the Acoustical Society of America, 1984, 76, 505-512.	0.5	101
39	The kinetics and mechanics of ultrasonically-induced cell lysis produced by non-trapped bubbles in a rotating culture tube. Ultrasound in Medicine and Biology, 1983, 9, 385-393.	0.7	33
40	The exposure vessel as a factor in ultrasonically-induced mammalian cell lysis—II. An explanation of the need to rotate exposure tubes. Ultrasound in Medicine and Biology, 1982, 8, 299-309.	0.7	62