
Oliver Brüggemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10605302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New configurations and applications of molecularly imprinted polymers. Journal of Chromatography A, 2000, 889, 15-24.	3.7	156
2	Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography. Journal of Chromatography A, 1997, 781, 43-53.	3.7	135
3	Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery. Polymers, 2013, 5, 161-187.	4.5	122
4	On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Journal of Chromatography A, 2010, 1217, 5389-5397.	3.7	113
5	Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 2014, 35, 227-236.	4.6	111
6	Porous polymer monoliths for small molecule separations: advancements and limitations. Analytical and Bioanalytical Chemistry, 2011, 400, 2289-2304.	3.7	103
7	Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. Journal of Chromatography A, 2010, 1217, 7514-7522.	3.7	92
8	Food Analyses Using Molecularly Imprinted Polymers. Journal of Agricultural and Food Chemistry, 2001, 49, 2105-2114.	5.2	88
9	Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites. Composites Science and Technology, 2014, 103, 49-55.	7.8	67
10	Waterâ€soluble, biocompatible polyphosphazenes with controllable and pHâ€promoted degradation behavior. Journal of Polymer Science Part A, 2014, 52, 287-294.	2.3	65
11	Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering. New Biotechnology, 2001, 18, 1-7.	2.7	46
12	Multifunctional and biodegradable polyphosphazenes for use as macromolecular anti-cancer drug carriers. Polymer Chemistry, 2011, 2, 828-834.	3.9	46
13	Chainâ€Endâ€Functionalized Polyphosphazenes via a Oneâ€Pot Phosphineâ€Mediated Living Polymerization. Macromolecular Rapid Communications, 2014, 35, 1135-1141.	3.9	46
14	Selective recognition and separation of \hat{l}^2 -lactam antibiotics using molecularly imprinted polymers. Analytical Communications, 1999, 36, 327.	2.2	43
15	Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorusâ€Based Polymers. Macromolecular Rapid Communications, 2017, 38, 1600644.	3.9	36
16	Degradable Glycineâ€Based Photoâ€Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromolecular Bioscience, 2015, 15, 351-363.	4.1	35
17	Chemical reaction engineering using molecularly imprinted polymeric catalysts. Analytica Chimica Acta, 2001, 435, 197-207.	5.4	34
18	Branched polyphosphazenes with controlled dimensions. Journal of Polymer Science Part A, 2013, 51, 4467-4473.	2.3	33

Oliver Brüggemann

#	Article	IF	CITATIONS
19	Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers, 2016, 8, 161.	4.5	33
20	Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Transactions, 2017, 46, 12114-12124.	3.3	32
21	Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes. Macromolecular Bioscience, 2016, 16, 1239-1249.	4.1	27
22	Applicability of new degradable hypericin-polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models. Photochemical and Photobiological Sciences, 2014, 13, 1607-1620.	2.9	24
23	Thermoresponsive Polyphosphazeneâ€Based Molecular Brushes by Living Cationic Polymerization. Macromolecular Symposia, 2014, 337, 116-123.	0.7	21
24	Photoreactive, water-soluble conjugates of hypericin with polyphosphazenes. Monatshefte Für Chemie, 2012, 143, 355-360.	1.8	20
25	Catalysis of a β-elimination applying membranes with incorporated molecularly imprinted polymer particles. Polymer Bulletin, 2005, 55, 287-297.	3.3	17
26	Polyphosphazene Based Starâ€Branched and Dendritic Molecular Brushes. Macromolecular Rapid Communications, 2016, 37, 769-774.	3.9	15
27	Molecularly Imprinted Materials — Receptors More Durable than Nature Can Provide. Advances in Biochemical Engineering/Biotechnology, 2002, 76, 127-163.	1.1	13
28	Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Industrial & Engineering Chemistry Research, 2018, 57, 3602-3609.	3.7	13
29	Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics, 2022, 14, 169.	4.5	8
30	Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs. Journal of Materials Chemistry B, 2019, 7, 7783-7794.	5.8	7
31	Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor. International Journal of Molecular Sciences, 2020, 21, 8552.	4.1	3