
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10605289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of myocardial retinoic acid receptor α induces diastolic dysfunction by promoting intracellular oxidative stress and calcium mishandling in adult mice. Journal of Molecular and Cellular Cardiology, 2016, 99, 100-112.	1.9	15
2	Thymosin β4 Prevents Angiotensin II-Induced Cardiomyocyte Growth by Regulating Wnt/WISP Signaling. Journal of Cellular Physiology, 2016, 231, 1737-1744.	4.1	13
3	Phosphorylation of Cardiac Myosin-Binding Protein-C Is a Critical Mediator of Diastolic Function. Circulation: Heart Failure, 2015, 8, 582-594.	3.9	92
4	Activation of Foxo1 by Insulin Resistance Promotes Cardiac Dysfunction and β–Myosin Heavy Chain Gene Expression. Circulation: Heart Failure, 2015, 8, 198-208.	3.9	68
5	Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. Journal of Clinical Medicine, 2014, 3, 566-594.	2.4	23
6	Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1036-H1045.	3.2	58
7	Novel Mechanism of Blood Pressure Regulation By Forkhead Box Class O1–Mediated Transcriptional Control of Hepatic Angiotensinogen. Hypertension, 2014, 64, 1131-1140.	2.7	30
8	Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. Journal of Molecular and Cellular Cardiology, 2013, 57, 106-118.	1.9	37
9	Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance. Diabetes, 2013, 62, 3887-3900.	0.6	138
10	Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovascular Diabetology, 2013, 12, 169.	6.8	16
11	Retinoic acid protects cardiomyocytes from high glucoseâ€induced apoptosis through inhibition of NFâ€îºB signaling Pathway. Journal of Cellular Physiology, 2013, 228, 380-392.	4.1	42
12	Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clinical Science, 2013, 124, 529-545.	4.3	34
13	The intracrine renin–angiotensin system. Clinical Science, 2012, 123, 273-284.	4.3	110
14	Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1655-H1666.	3.2	40
15	Review: Intracardiac intracellular angiotensin system in diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R510-R517.	1.8	62
16	High Glucoseâ€induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. Journal of Cellular Physiology, 2012, 227, 2632-2644.	4.1	44
17	Activation of the Renin-Angiotensin System in Heart Failure. , 2011, , 134-151.		3
18	Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radical Biology and Medicine, 2011, 50, 206-215.	2.9	34

#	Article	IF	CITATIONS
19	Retinoic acid receptorâ€mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: Role of the reninâ€angiotensin system. Journal of Cellular Physiology, 2011, 226, 1292-1307.	4.1	44
20	The intracellular renin-angiotensin system in the heart. Current Hypertension Reports, 2009, 11, 104-110.	3.5	57
21	Novel Aspects of the Cardiac Renin–Angiotensin System. , 2009, , 75-89.		1
22	Allâ€trans retinoic acid prevents angiotensin II―and mechanical stretchâ€induced reactive oxygen species generation and cardiomyocyte apoptosis. Journal of Cellular Physiology, 2008, 215, 172-181.	4.1	64
23	All- <i>trans</i> retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H633-H644.	3.2	73
24	Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1675-H1684.	3.2	159
25	Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis. Diabetes, 2008, 57, 3297-3306.	0.6	282
26	The intracellular renin–angiotensin system: implications in cardiovascular remodeling. Current Opinion in Nephrology and Hypertension, 2008, 17, 168-173.	2.0	121
27	High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H939-H948.	3.2	130
28	Kinase inhibitors for cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2007, 42, 1-11.	1.9	26
29	The intracellular renin–angiotensin system: a new paradigm. Trends in Endocrinology and Metabolism, 2007, 18, 208-214.	7.1	116
30	Retinoic Acid and the Heart. Vitamins and Hormones, 2007, 75, 257-283.	1.7	80
31	Cardiac and Vascular Renin-Angiotensin Systems. , 2007, , 23-42.		3
32	Intracellular Signaling and the Cardiac Renin Angiotensin System. , 2006, , 1-17.		0
33	Intracellular angiotensin II induces cell proliferation independent of AT1 receptor. American Journal of Physiology - Cell Physiology, 2006, 291, C995-C1001.	4.6	70
34	PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. Journal of Cellular Physiology, 2005, 202, 536-553.	4.1	92
35	Activation of protein kinase A by atrial natriuretic peptide in neonatal rat cardiac fibroblasts: Role in regulation of the local renin-angiotensin system. Regulatory Peptides, 2005, 132, 1-8.	1.9	25
36	Mitogen-activated Protein Kinases and Mitogen-activated Protein Kinase Phosphatases Mediate the Inhibitory Effects of All-trans Retinoic Acid on the Hypertrophic Growth of Cardiomyocytes. Journal of Biological Chemistry, 2004, 279, 54905-54917.	3.4	65

#	Article	IF	CITATIONS
37	Agonist-dependent internalization of the angiotensin II type one receptor (AT1): role of C-terminus phosphorylation in recruitment of β-arrestins. Regulatory Peptides, 2004, 120, 141-148.	1.9	20
38	Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regulatory Peptides, 2004, 120, 5-13.	1.9	139
39	Angiotensin II effects on STAT3 phosphorylation in cardiomyocytes: evidence for Erk-dependent Tyr705 dephosphorylation. Basic Research in Cardiology, 2003, 98, 33-38.	5.9	23
40	Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1454-H1459.	3.2	42
41	Interplay Between the Cardiac Renin Angiotensin System and JAK-STAT Signaling: Role in Cardiac Hypertrophy, Ischemia/Reperfusion Dysfunction, and Heart Failure. Journal of Molecular and Cellular Cardiology, 2002, 34, 1443-1453.	1.9	162
42	Cytokine G-protein signaling crosstalk in cardiomyocytes: attenuation of Jak-STAT activation by endothelin-1. Molecular and Cellular Biochemistry, 2002, 240, 39-46.	3.1	15
43	Regulation of angiotensinogen gene expression and protein in neonatal rat cardiac fibroblasts by glucocorticoid and β-adrenergic stimulation. Basic Research in Cardiology, 2000, 95, 485-491.	5.9	38
44	Cardiotrophin-1 Increases Angiotensinogen mRNA in Rat Cardiac Myocytes Through STAT3. Hypertension, 2000, 35, 1191-1196.	2.7	90
45	The Cardiac Renin-Angiotensin System. Circulation Research, 1999, 85, 643-650.	4.5	343
46	Angiotensin Il–Stimulated Induction of <i>sis</i> -Inducing Factor Is Mediated by Pertussis Toxin–Insensitive G _q Proteins in Cardiac Myocytes. Hypertension, 1999, 34, 603-608.	2.7	27
47	Amplification of Angiotensin II Signaling in Cardiac Myocytes by Adenovirus-Mediated Overexpression of the AT1 Receptora. Annals of the New York Academy of Sciences, 1999, 874, 20-26.	3.8	8
48	Paracrine actions of cardiac fibroblasts on cardiomyocytes: implications for the cardiac renin–angiotensin system. American Journal of Cardiology, 1999, 83, 44-47.	1.6	25
49	Actions of Angiotensin II on Isolated Cardiac Myocytes. Heart Failure Reviews, 1998, 3, 125-130.	3.9	8
50	α-Thrombin Inhibits Signal Transducers and Activators of Transcription 3 Signaling by Interleukin-6, Leukemia Inhibitory Factor, and Ciliary Neurotrophic Factor in CCL39 Cells. Archives of Biochemistry and Biophysics, 1998, 350, 307-314.	3.0	10
51	Phosphorylation of the Angiotensin II (AT1A) Receptor Carboxyl Terminus: A Role in Receptor Endocytosis. Molecular Endocrinology, 1998, 12, 1513-1524.	3.7	81
52	Pathophysiology of the Renin-Angiotensin System in Heart Failure. Advances in Organ Biology, 1998, , 305-322.	0.1	1
53	Phosphorylation of the Angiotensin II (AT1A) Receptor Carboxyl Terminus: A Role in Receptor Endocytosis. Molecular Endocrinology, 1998, 12, 1513-1524.	3.7	31
54	Angiotensin II-Mediated Stat Signal Transduction: Studies in Neonatal Rat Cardiac Fibroblasts and CHO-K1 Cells Expressing AT1A Receptors. Progress in Experimental Cardiology, 1998, , 357-366.	0.0	0

#	Article	IF	CITATIONS
55	Developmental Regulatlon of the Cardiac Renin-Angiotensin System: Expression and Associatlon With Growth and Apoptosis. Progress in Experimental Cardiology, 1998, , 403-414.	0.0	0
56	α-Thrombin Stimulatessis-Inducing Factor-A DNA Binding Activity in Rat Aortic Smooth Muscle Cells. Hypertension, 1997, 29, 356-360.	2.7	9
57	The Type I Angiotensin II Receptor Couples to Stat1 and Stat3 Activation Through Jak2 Kinase in Neonatal Rat Cardiac Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 2513-2524.	1.9	122
58	Angiotensin II stimulates rapid serine phosphorylation of transcription factor Stat3. , 1997, 170, 171-176.		20
59	Evidence against a role for protein kinase C in the regulation of the angiotensin II (AT1A) receptor. European Journal of Pharmacology, 1996, 295, 119-122.	3.5	7
60	Endothelin Stimulatessis-Inducing Factor-like DNA Binding Activity in CHO-K1 Cells Expressing ETAReceptors. Biochemical and Biophysical Research Communications, 1996, 221, 62-66.	2.1	21
61	Angiotensin II signalling pathways in cardiac fibroblasts: Conventional versus novel mechanisms in mediating cardiac growth and function. Molecular and Cellular Biochemistry, 1996, 157, 15-21.	3.1	69
62	Angiotensin II Interferes with Interleukin 6-induced Stat3 Signaling by a Pathway Involving Mitogen-activated Protein Kinase Kinase 1. Journal of Biological Chemistry, 1996, 271, 22447-22452.	3.4	32
63	Role of Type 1 and Type 2 Angiotensin Receptors in Angiotensin II–Induced Cardiomyocyte Hypertrophy. Hypertension, 1996, 28, 635-640.	2.7	176
64	Angiotensin II signalling pathways in cardiac fibroblasts: Conventional versus novel mechanisms in mediating cardiac growth and function. , 1996, , 15-21.		0
65	Activation of the STAT Pathway by Angiotensin II in T3CHO/AT1A Cells. Journal of Biological Chemistry, 1995, 270, 19059-19065.	3.4	68
66	Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: Rapid desensitization by angiotensin II. Molecular and Cellular Biochemistry, 1995, 146, 79-89.	3.1	46
67	Angiotensin II Receptor Endocytosis Involves Two Distinct Regions of the Cytoplasmic Tail. Journal of Biological Chemistry, 1995, 270, 22153-22159.	3.4	106
68	Stable Expression of a Truncated AT1A Receptor in CHO-K1 Cells. Journal of Biological Chemistry, 1995, 270, 207-213.	3.4	121
69	Protein Kinase C in Angiotensin II Signalling in Neonatal Rat Cardiac Fibroblasts Annals of the New York Academy of Sciences, 1995, 752, 158-167.	3.8	16
70	Angiotensin II induces phosphatidic acid formation in neonatal rat cardiac fibroblasts: Evaluation of the roles of phospholipases C and D. Molecular and Cellular Biochemistry, 1994, 141, 135-143.	3.1	18
71	Evidence for a role of an intracardiac renin-angiotensin system in normal and failing hearts. Trends in Cardiovascular Medicine, 1993, 3, 67-74.	4.9	72
72	Angiotensin II Stimulation of Left Ventricular Hypertrophy in Adult Rat Heart. American Journal of Hypertension, 1992, 5, 276-280.	2.0	198

#	Article	IF	CITATIONS
73	Angiotensin II and left ventricular growth in newborn pig heart. Journal of Molecular and Cellular Cardiology, 1991, 23, 1031-1038.	1.9	84
74	Control of growth in the neonatal pig heart. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1991, 261, L3-L7.	2.9	9