Jianming Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10603954/publications.pdf Version: 2024-02-01

LIANMING FAN

#	Article	IF	CITATIONS
1	Surface hydroxyl groups functionalized graphite carbon nitride for high efficient removal of diquat dibromide from water. Journal of Colloid and Interface Science, 2021, 582, 70-80.	9.4	32
2	Tiâ€Based Surface Integrated Layer and Bulk Doping for Stable Voltage and Long Life of Liâ€Rich Layered Cathodes. Advanced Functional Materials, 2021, 31, 2009310.	14.9	59
3	An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial coulombic efficiency. Journal of Energy Chemistry, 2021, 62, 120-126.	12.9	10
4	A cathodic photocorrosion-assisted strategy to construct a CdS/Pt heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 2021, 45, 10315-10324.	2.8	13
5	Accurate Control of Initial Coulombic Efficiency for Lithiumâ€rich Manganeseâ€based Layered Oxides by Surface Multicomponent Integration. Angewandte Chemie - International Edition, 2020, 59, 23061-23066.	13.8	107
6	Accurate Control of Initial Coulombic Efficiency for Lithiumâ€rich Manganeseâ€based Layered Oxides by Surface Multicomponent Integration. Angewandte Chemie, 2020, 132, 23261-23266.	2.0	4
7	Zeolitic imidazolate framework-8 modified LiNi1/3Co1/3Mn1/3O2: A durable cathode showing excellent electrochemical performances in Li-ion batteries. Electrochimica Acta, 2020, 336, 135724.	5.2	10
8	Unveiling the Impact of the Polypyrrole Coating Layer Thickness on the Electrochemical Performances of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ in Li–Ion Battery. ChemistrySelect, 2019, 4, 6354-6360.	1.5	20
9	Reconstructing the Surface Structure of Li-Rich Cathodes for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19950-19958.	8.0	37
10	Facile synthesis of Mn2.1V0.9O4/rGO: A novel high-rate anode material for lithium-ion batteries. Journal of Power Sources, 2019, 426, 197-204.	7.8	28
11	A facile strategy to fabricate V2O3/Porous N-doped carbon nanosheet framework as high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 789, 288-294.	5.5	28
12	Heatâ€Treatmentâ€Assisted Moltenâ€Salt Strategy to Enhance Electrochemical Performances of Liâ€Rich Assembled Microspheres by Tailoring Their Surface Features. Chemistry - A European Journal, 2019, 25, 2003-2010.	3.3	10
13	Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries. Journal of Power Sources, 2018, 384, 34-41.	7.8	51
14	In Situ Synthesis of Mn ₃ O ₄ Nanoparticles on Hollow Carbon Nanofiber as Highâ€Performance Lithiumâ€ion Battery Anode. Chemistry - A European Journal, 2018, 24, 9632-9638.	3.3	37
15	Surface element segregation and electrical conductivity of lithium layered transition-metal oxide cathode materials. Applied Surface Science, 2018, 427, 226-232.	6.1	8
16	Simply Constructing Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ /C Composites for Superior Electrochemical Performance and Thermal Stability in Li–Ion Battery. ChemistrySelect, 2018, 3, 13647-13653.	1.5	3
17	Fast synthesis of Co _{1.8} V _{1.2} O ₄ /rGO as a high-rate anode material for lithium-ion batteries. Chemical Communications, 2018, 54, 7689-7692.	4.1	24
18	Pristine Surface Investigation of Li1.2Mn0.54Ni0.13Co0.13O2 towards Improving Capacity and Rate-capability for Lithium-ion Batteries. Electrochimica Acta, 2017, 245, 118-127.	5.2	9

Jianming Fan

#	Article	IF	CITATIONS
19	Tuning shell thickness of MnO/C core-shell nanowires for optimum performance of lithium-ion batteries. Chemical Research in Chinese Universities, 2017, 33, 924-928.	2.6	8
20	Improved Cycling Stability of Cobalt-free Li-rich Oxides with a Stable Interface by Dual Doping. Electrochimica Acta, 2016, 196, 505-516.	5.2	49
21	LiMO2 (MÂ=ÂMn, Co, Ni) hexagonal sheets with (101) facets for ultrafast charging–discharging lithium ion batteries. Journal of Power Sources, 2015, 276, 238-246.	7.8	20
22	Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. Journal of Materials Chemistry A, 2015, 3, 10592-10602.	10.3	62
23	Hydrothermal-Assisted Synthesis of Li-Rich Layered Oxide Microspheres with High Capacity and Superior Rate-capability as a Cathode for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 7-16.	5.2	62
24	A Study on Storage Characteristics of Pristine Li-rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 : Effect of Storage Temperature and Duration. Electrochimica Acta, 2015, 154, 249-258.	5.2	30
25	A New Spinel‣ayered Liâ€Rich Microsphere as a Highâ€Rate Cathode Material for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400062.	19.5	164
26	K ⁺ -Doped Li _{1.2} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ : A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10330-10341.	8.0	332
27	Nickel-Rich Layered Microspheres Cathodes: Lithium/Nickel Disordering and Electrochemical Performance. ACS Applied Materials & Interfaces, 2014, 6, 15822-15831.	8.0	174