Wataru Yamori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1060355/publications.pdf Version: 2024-02-01

Μλαταρίι Υλμορί

#	Article	IF	CITATIONS
1	Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 2014, 119, 101-117.	1.6	756
2	Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Annual Review of Plant Biology, 2016, 67, 81-106.	8.6	436
3	Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis Research, 2014, 119, 89-100.	1.6	258
4	A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 2016, 6, 20147.	1.6	237
5	Rubisco activase is a key regulator of nonâ€steadyâ€state photosynthesis at any leaf temperature and, to a lesser extent, of steadyâ€state photosynthesis at high temperature. Plant Journal, 2012, 71, 871-880.	2.8	220
6	Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment, 2005, 28, 536-547.	2.8	212
7	Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant Journal, 2011, 68, 966-976.	2.8	211
8	Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell and Environment, 2006, 29, 1659-1670.	2.8	189
9	Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 2016, 129, 379-395.	1.2	176
10	Phenotypic Plasticity in Photosynthetic Temperature Acclimation among Crop Species with Different Cold Tolerances Â. Plant Physiology, 2009, 152, 388-399.	2.3	155
11	The rateâ€limiting step for CO ₂ assimilation at different temperatures is influenced by the leaf nitrogen content in several C ₃ crop species. Plant, Cell and Environment, 2011, 34, 764-777.	2.8	150
12	Effects of Internal Conductance on the Temperature Dependence of the Photosynthetic Rate in Spinach Leaves from Contrasting Growth Temperatures. Plant and Cell Physiology, 2006, 47, 1069-1080.	1.5	145
13	Effects of growth and measurement light intensities on temperature dependence of CO ₂ assimilation rate in tobacco leaves. Plant, Cell and Environment, 2010, 33, 332-343.	2.8	144
14	The Roles of ATP Synthase and the Cytochrome <i>b</i> Â6/ <i>f</i> Complexes in Limiting Chloroplast Electron Transport and Determining Photosynthetic Capacity Â. Plant Physiology, 2011, 155, 956-962.	2.3	144
15	Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant, Cell and Environment, 2020, 43, 1230-1240.	2.8	130
16	Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome <i>b</i> ₆ / <i>f</i> complex. Plant, Cell and Environment, 2016, 39, 80-87.	2.8	125
17	The Solar Action Spectrum of Photosystem II Damage Â. Plant Physiology, 2010, 153, 988-993.	2.3	124
18	Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Scientific Reports, 2015, 5, 13908.	1.6	104

Wataru Yamori

#	Article	IF	CITATIONS
19	Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection. Cell, 2017, 171, 1316-1325.e12.	13.5	99
20	Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. Journal of Experimental Botany, 2020, 71, 2339-2350.	2.4	98
21	Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO ₂ Assimilation in Rice. Plant Physiology, 2018, 176, 1509-1518.	2.3	91
22	Cold-Tolerant Crop Species Have Greater Temperature Homeostasis of Leaf Respiration and Photosynthesis Than Cold-Sensitive Species. Plant and Cell Physiology, 2009, 50, 203-215.	1.5	88
23	Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer. Frontiers in Plant Science, 2016, 7, 448.	1.7	80
24	Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass Production. Plant Physiology, 2018, 178, 1358-1369.	2.3	78
25	Effect of Rubisco Activase Deficiency on the Temperature Response of CO2 Assimilation Rate and Rubisco Activation State: Insights from Transgenic Tobacco with Reduced Amounts of Rubisco Activase Â. Plant Physiology, 2009, 151, 2073-2082.	2.3	76
26	Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution. Frontiers in Plant Science, 2017, 8, 708.	1.7	75
27	Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Current Opinion in Plant Biology, 2019, 49, 52-59.	3.5	72
28	Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. Frontiers in Plant Science, 2020, 11, 589603.	1.7	69
29	Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae, 2015, 197, 17-23.	1.7	63
30	Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant, Cell and Environment, 2021, 44, 2308-2320.	2.8	63
31	Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (<i>Oryza) Tj ETQq1 1 0.784314</i>	4 rgBT /Ov 2.6	verlock 10 Tf
32	The Role of Electron Transport in Determining the Temperature Dependence of the Photosynthetic Rate in Spinach Leaves Grown at Contrasting Temperatures. Plant and Cell Physiology, 2008, 49, 583-591.	1.5	56
33	Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiology, 2021, 185, 146-160.	2.3	53
34	High-yielding rice Takanari has superior photosynthetic response to a commercial rice Koshihikari under fluctuating light. Journal of Experimental Botany, 2019, 70, 5287-5297.	2.4	49
35	Continuous Irradiation with Alternating Red and Blue Light Enhances Plant Growth While Keeping Nutritional Quality in Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1804-1809.	0.5	46
36	Photoprotection of PSI by Far-Red Light Against the Fluctuating Light-Induced Photoinhibition in <i>Arabidopsis thaliana</i> and Field-Grown Plants. Plant and Cell Physiology, 2017, 58, pcw215.	1.5	43

WATARU YAMORI

#	Article	IF	CITATIONS
37	Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves. Frontiers in Plant Science, 2015, 6, 1110.	1.7	40
38	Mitochondrial Alternative Pathway-Associated Photoprotection of Photosystem II is Related to the Photorespiratory Pathway. Plant and Cell Physiology, 2016, 57, pcw036.	1.5	40
39	Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. Journal of Experimental Botany, 2012, 63, 4781-4795.	2.4	36
40	Far-Red Light Accelerates Photosynthesis in the Low-Light Phases of Fluctuating Light. Plant and Cell Physiology, 2020, 61, 192-202.	1.5	35
41	The Arabidopsis <i>phyB-9</i> Mutant Has a Second-Site Mutation in the <i>VENOSA4</i> Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth. Plant Physiology, 2018, 178, 3-6.	2.3	32
42	Minimizing VPD Fluctuations Maintains Higher Stomatal Conductance and Photosynthesis, Resulting in Improvement of Plant Growth in Lettuce. Frontiers in Plant Science, 2021, 12, 646144.	1.7	28
43	Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytologist, 2015, 207, 34-42.	3.5	27
44	A Combination of Downward Lighting and Supplemental Upward Lighting Improves Plant Growth in a Closed Plant Factory with Artificial Lighting. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 831-835.	0.5	27
45	Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiology, 2021, 185, 108-119.	2.3	25
46	Cotton bracts are adapted to a microenvironment of concentrated CO2 produced by rapid fruit respiration. Annals of Botany, 2013, 112, 31-40.	1.4	24
47	Supplemental LED inter-lighting compensates for a shortage of light for plant growth and yield under the lack of sunshine. PLoS ONE, 2018, 13, e0206592.	1.1	23
48	Whole Irradiated Plant Leaves Showed Faster Photosynthetic Induction Than Individually Irradiated Leaves via Improved Stomatal Opening. Frontiers in Plant Science, 2019, 10, 1512.	1.7	21
49	Rice Cultivar Takanari Has Higher Photosynthetic Performance Under Fluctuating Light Than Koshihikari, Especially Under Limited Nitrogen Supply and Elevated CO2. Frontiers in Plant Science, 2020, 11, 1308.	1.7	18
50	Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. Physiologia Plantarum, 2022, 174, e13603.	2.6	18
51	Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis. Plant Cell, 2021, 33, 2618-2636.	3.1	17
52	Degradation of the photosystem II core complex is independent of chlorophyll degradation mediated by Stay-Green Mg2+ dechelatase in Arabidopsis. Plant Science, 2021, 307, 110902.	1.7	14
53	Effects of co-overproduction of sedoheptulose-1,7-bisphosphatase and Rubisco on photosynthesis in rice. Soil Science and Plant Nutrition, 2019, 65, 36-40.	0.8	13
54	Overexpression of BUNDLE SHEATH DEFECTIVE 2 improves the efficiency of photosynthesis and growth in <i>Arabidopsis</i> . Plant Journal, 2020, 102, 129-137.	2.8	13

Wataru Yamori

#	Article	IF	CITATIONS
55	Feasibility Study of Rice Growth in Plant Factories. Rice Research Open Access, 2014, 2, .	0.4	13
56	Optimum root zone temperature of photosynthesis and plant growth depends on air temperature in lettuce plants. Plant Molecular Biology, 2022, 110, 385-395.	2.0	13
57	Collaboration between NDH and KEA3 Allows Maximally Efficient Photosynthesis after a Long Dark Adaptation. Plant Physiology, 2020, 184, 2078-2090.	2.3	11
58	Concurrent Increases in Leaf Temperature With Light Accelerate Photosynthetic Induction in Tropical Tree Seedlings. Frontiers in Plant Science, 2020, 11, 1216.	1.7	10
59	Flavonoid Productivity Optimized for Green and Red Forms of <i>Perilla frutescens</i> via Environmental Control Technologies in Plant Factory. Journal of Food Quality, 2018, 2018, 1-9.	1.4	9
60	Photosystem I in low light-grown leaves of Alocasia odora, a shade-tolerant plant, is resistant to fluctuating light-induced photoinhibition. Photosynthesis Research, 2021, 149, 69-82.	1.6	9
61	Alternating Red/Blue Light Increases Leaf Thickness and Mesophyll Cell Density in the Early Growth Stage, Improving Photosynthesis and Plant Growth in Lettuce. Environmental Control in Biology, 2021, 59, 59-67.	0.3	8
62	Flavodiiron proteins enhance the rate of CO2 assimilation in Arabidopsis under fluctuating light intensity. Plant Physiology, 2022, 189, 375-387.	2.3	8
63	Strategies for Optimizing Photosynthesis with Biotechnology to Improve Crop Yield. Books in Soils, Plants, and the Environment, 2016, , 741-759.	0.1	7
64	Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. Journal of Experimental Botany, 2022, 73, 3109-3121.	2.4	7
65	Strategies for Engineering Photosynthesis for Enhanced Plant Biomass Production. , 2021, , 31-58.		6
66	Feasibility Study of Rice Growth in Plant Factories. Rice Research Open Access, 2014, 02, .	0.4	5
67	Photosynthesis and respiration. , 2016, , 141-150.		5
68	Photosynthesis and respiration. , 2020, , 197-206.		5
69	Optimal Light Wavelength for a Novel Cultivation System with a Supplemental Upward Lighting in Plant Factory with Artificial Lighting. Environmental Control in Biology, 2021, 59, 21-27.	0.3	4
70	Upward LED Lighting from the Base Suppresses Senescence of Lower Leaves and Promotes Flowering in Indoor Rose Management. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 716-721.	0.5	4
71	Expression of rice <i>45S rRNA</i> promotes cell proliferation, leading to enhancement of growth in transgenic tobacco. Plant Biotechnology, 2017, 34, 29-38.	0.5	3
72	Next Evolution of Agriculture: A Review of Innovations in Plant Factories. Books in Soils, Plants, and the Environment, 2016, , 723-740.	0.1	3

#	Article	IF	CITATIONS
73	Quantification of Rubisco Activase Content in Leaf Extracts. Methods in Molecular Biology, 2011, 684, 383-391.	0.4	2
74	Increased Cuticle Permeability Caused by a New Allele of <i>ACETYL</i> - <i>COA CARBOXYLASE1</i> Enhances CO ₂ Uptake. Plant Physiology, 2020, 184, 1917-1926.	2.3	1
75	The Effects of Antisense Suppression of \hat{i}' Subunit of Chloroplast ATP Synthase on the Rates of Chloroplast Electron Transport and CO2 Assimilation in Transgenic Tobacco. Advanced Topics in Science and Technology in China, 2013, , 773-776.	0.0	0

⁷⁶ Effects of anoxia and hypoxia on the two-spotted spider mite, Tetranychus urticae (Acari:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td