William J Kaiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10602989/publications.pdf Version: 2024-02-01

WILLIAM I KAISED

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature, 2011, 471, 368-372.	13.7	881
3	Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL. Journal of Biological Chemistry, 2013, 288, 31268-31279.	1.6	727
4	DAI/ZBP1/DLM-1 Complexes with RIP3 to Mediate Virus-Induced Programmed Necrosis that Is Targeted by Murine Cytomegalovirus vIRA. Cell Host and Microbe, 2012, 11, 290-297.	5.1	601
5	Virus Inhibition of RIP3-Dependent Necrosis. Cell Host and Microbe, 2010, 7, 302-313.	5.1	494
6	RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Molecular Cell, 2014, 56, 481-495.	4.5	470
7	Apoptosis Induced by the Toll-Like Receptor Adaptor TRIF Is Dependent on Its Receptor Interacting Protein Homotypic Interaction Motif. Journal of Immunology, 2005, 174, 4942-4952.	0.4	322
8	Cutting Edge: RIP1 Kinase Activity Is Dispensable for Normal Development but Is a Key Regulator of Inflammation in SHARPIN-Deficient Mice. Journal of Immunology, 2014, 192, 5476-5480.	0.4	312
9	RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.	5.1	299
10	Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell, 2020, 180, 1115-1129.e13.	13.5	288
11	Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nature Reviews Immunology, 2012, 12, 79-88.	10.6	266
12	Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. Journal of Immunology, 2012, 189, 5508-5512.	0.4	254
13	Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7391-7396.	3.3	250
14	RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7753-7758.	3.3	248
15	Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature, 2020, 580, 391-395.	13.7	243
16	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	2.8	232
17	Receptor-Interacting Protein Homotypic Interaction Motif-Dependent Control of NF-ήB Activation via the DNA-Dependent Activator of IFN Regulatory Factors. Journal of Immunology, 2008, 181, 6427-6434.	0.4	224
18	Herpes Simplex Virus Suppresses Necroptosis in Human Cells. Cell Host and Microbe, 2015, 17, 243-251.	5.1	221

WILLIAM J KAISER

#	Article	IF	CITATIONS
19	Inhibitor of Apoptosis Proteins Physically Interact with and Block Apoptosis Induced by <i>Drosophila</i> Proteins HID and GRIM. Molecular and Cellular Biology, 1998, 18, 3300-3309.	1.1	208
20	Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling. Journal of Biological Chemistry, 2015, 290, 20167-20184.	1.6	169
21	Cytomegalovirus M45 Cell Death Suppression Requires Receptor-interacting Protein (RIP) Homotypic Interaction Motif (RHIM)-dependent Interaction with RIP1. Journal of Biological Chemistry, 2008, 283, 16966-16970.	1.6	165
22	Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Molecular and Cellular Oncology, 2015, 2, e975093.	0.3	142
23	Viral modulation of programmed necrosis. Current Opinion in Virology, 2013, 3, 296-306.	2.6	134
24	T cell–intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nature Immunology, 2016, 17, 583-592.	7.0	127
25	Suppression of RIP3-dependent Necroptosis by Human Cytomegalovirus. Journal of Biological Chemistry, 2015, 290, 11635-11648.	1.6	118
26	Caspase-8 Modulates Dectin-1 and Complement Receptor 3–Driven IL-1β Production in Response to β-Glucans and the Fungal Pathogen, <i>Candida albicans</i> . Journal of Immunology, 2014, 193, 2519-2530.	0.4	114
27	MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Molecular Cell, 2018, 70, 936-948.e7.	4.5	111
28	TheDrosophilainhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Letters, 1998, 440, 243-248.	1.3	102
29	Proapoptotic Chemotherapeutic Drugs Induce Noncanonical Processing and Release of IL-1Î ² via Caspase-8 in Dendritic Cells. Journal of Immunology, 2013, 191, 4789-4803.	0.4	101
30	Necroptosis: The Trojan horse in cell autonomous antiviral host defense. Virology, 2015, 479-480, 160-166.	1.1	94
31	Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death and Disease, 2018, 9, 816.	2.7	88
32	Manipulation of apoptosis and necroptosis signaling by herpesviruses. Medical Microbiology and Immunology, 2015, 204, 439-448.	2.6	85
33	TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. Journal of Clinical Investigation, 2018, 128, 5399-5412.	3.9	78
34	ZBP1/DAI Drives RIPK3-Mediated Cell Death Induced by IFNs in the Absence of RIPK1. Journal of Immunology, 2019, 203, 1348-1355.	0.4	72
35	Murine cytomegalovirus <scp>IE</scp> 3â€dependent transcription is required for <scp>DAI</scp> / <scp>ZBP</scp> 1â€mediated necroptosis. EMBO Reports, 2017, 18, 1429-1441.	2.0	71
36	True Grit: Programmed Necrosis in Antiviral Host Defense, Inflammation, and Immunogenicity. Journal of Immunology, 2014, 192, 2019-2026.	0.4	68

WILLIAM J KAISER

#	Article	IF	CITATIONS
37	A Mutational Analysis of the Baculovirus Inhibitor of Apoptosis Op-IAP. Journal of Biological Chemistry, 1998, 273, 33915-33921.	1.6	61
38	Necroptosis restricts influenza A virus as a stand-alone cell death mechanism. Journal of Experimental Medicine, 2020, 217, .	4.2	60
39	IFN-α Sensitizes Human Umbilical Vein Endothelial Cells to Apoptosis Induced by Double-Stranded RNA. Journal of Immunology, 2004, 172, 1699-1710.	0.4	56
40	Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2786-E2795.	3.3	56
41	RIPK1 prevents aberrant ZBP1-initiated necroptosis. Oncotarget, 2017, 8, 1-2.	0.8	53
42	Protein Kinase R Mediates Intestinal Epithelial Gene Remodeling in Response to Double-Stranded RNA and Live Rotavirus. Journal of Immunology, 2005, 174, 6322-6331.	0.4	50
43	Anti- and pro-apoptotic activities of baculovirus and Drosophila IAPs in an insect cell line. Cell Death and Differentiation, 1997, 4, 733-744.	5.0	42
44	Baculovirus Regulation of Apoptosis. Seminars in Virology, 1998, 8, 445-452.	4.1	28
45	Necroptosis-based CRISPR knockout screen reveals Neuropilin-1 as a critical host factor for early stages of murine cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20109-20116.	3.3	25
46	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
47	DAI Another Way: Necroptotic Control of Viral Infection. Cell Host and Microbe, 2017, 21, 290-293.	5.1	19
48	ESCRTing Necroptosis. Cell, 2017, 169, 186-187.	13.5	8
49	A RIPtide Protects Neurons from Infection. Cell Host and Microbe, 2017, 21, 415-416.	5.1	1