Ali Javey

List of Publications by Citations

Source: https://exaly.com/author-pdf/1060048/ali-javey-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45,136 308 104 209 h-index g-index citations papers 361 51,419 13.3 7.54 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
308	Ballistic carbon nanotube field-effect transistors. <i>Nature</i> , 2003 , 424, 654-7	50.4	2544
307	Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. <i>Nature</i> , 2016 , 529, 509-514	50.4	2526
306	High-performance single layered WSelp-FETs with chemically doped contacts. <i>Nano Letters</i> , 2012 , 12, 3788-92	11.5	1322
305	Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. <i>Nature Materials</i> , 2010 , 9, 82	1-267	1013
304	User-interactive electronic skin for instantaneous pressure visualization. <i>Nature Materials</i> , 2013 , 12, 89	9 <i>-27</i> 04	911
303	Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. <i>Nature Materials</i> , 2009 , 8, 648-53	27	909
302	Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. <i>Nano Letters</i> , 2003 , 3, 347-351	11.5	859
301	MoS2 transistors with 1-nanometer gate lengths. <i>Science</i> , 2016 , 354, 99-102	33.3	812
300	Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. <i>Nano Letters</i> , 2003 , 3, 193-198	11.5	808
299	Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 6198-202	11.5	803
298	High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. <i>Nature Materials</i> , 2002 , 1, 241-6	27	796
297	Near-unity photoluminescence quantum yield in MoS\(\Omega\)Science, 2015 , 350, 1065-8	33.3	792
296	Wearable sweat sensors. <i>Nature Electronics</i> , 2018 , 1, 160-171	28.4	588
295	Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. <i>Nano Letters</i> , 2013 , 13, 1991-5	11.5	567
294	Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11512-3	16.4	524
293	Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. <i>Nano Letters</i> , 2007 , 7, 773-7	11.5	518
292	Field-effect transistors built from all two-dimensional material components. ACS Nano, 2014 , 8, 6259-6	6416.7	496

291	Air-stable surface charge transfer doping of MoSIby benzyl viologen. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7853-6	16.4	485	
290	High-field quasiballistic transport in short carbon nanotubes. <i>Physical Review Letters</i> , 2004 , 92, 106804	7.4	476	
289	Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. <i>Nano Letters</i> , 2008 , 8, 20-5	11.5	471	
288	Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. <i>ACS Nano</i> , 2015 , 9, 2071-9	16.7	441	
287	Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. <i>Nano Letters</i> , 2004 , 4, 1319-1322	11.5	435	
286	Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High- G ate Dielectrics. <i>Nano Letters</i> , 2004 , 4, 447-450	11.5	430	
285	MoSIP-type transistors and diodes enabled by high work function MoOx contacts. <i>Nano Letters</i> , 2014 , 14, 1337-42	11.5	419	
284	Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method. <i>Nano Letters</i> , 2004 , 4, 317-321	11.5	416	
283	Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Letters, 2014 , 14, 4592-7	11.5	415	
282	Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. <i>Nano Letters</i> , 2011 , 11, 3239-44	11.5	411	
281	Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4625-4630	11.5	404	
280	Hole selective MoOx contact for silicon solar cells. <i>Nano Letters</i> , 2014 , 14, 967-71	11.5	392	
279	Direct chemical vapor deposition of graphene on dielectric surfaces. <i>Nano Letters</i> , 2010 , 10, 1542-8	11.5	387	
278	Germanium nanowire field-effect transistors with SiO2 and high-IHfO2 gate dielectrics. <i>Applied Physics Letters</i> , 2003 , 83, 2432-2434	3.4	386	
277	High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. <i>Nano Letters</i> , 2005 , 5, 345-8	11.5	379	
276	Flexible Electronics toward Wearable Sensing. Accounts of Chemical Research, 2019, 52, 523-533	24.3	378	
275	Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 1614	4 1 1 <u>5</u> 5	365	
274	Enabling unassisted solar water splitting by iron oxide and silicon. <i>Nature Communications</i> , 2015 , 6, 744	717.4	359	

273	Efficient silicon solar cells with dopant-free asymmetric heterocontacts. <i>Nature Energy</i> , 2016 , 1,	62.3	351
272	Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts. <i>Nano Letters</i> , 2003 , 3, 1541-	154.4	350
271	Toward the Development of Printable Nanowire Electronics and Sensors. <i>Advanced Materials</i> , 2009 , 21, 3730-3743	24	336
270	Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. <i>Nano Letters</i> , 2013 , 13, 3864-9	11.5	334
269	Diameter-dependent electron mobility of InAs nanowires. <i>Nano Letters</i> , 2009 , 9, 360-5	11.5	328
268	Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. <i>Nature</i> , 2010 , 468, 286-9	50.4	327
267	A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca(2+) and pH. <i>ACS Nano</i> , 2016 , 10, 7216-24	16.7	324
266	Silicon heterojunction solar cell with passivated hole selective MoOx contact. <i>Applied Physics Letters</i> , 2014 , 104, 113902	3.4	307
265	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. <i>2D Materials</i> , 2016 , 3, 042001	5.9	297
264	Printed Carbon Nanotube Electronics and Sensor Systems. <i>Advanced Materials</i> , 2016 , 28, 4397-414	24	284
263	Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators. <i>Nano Letters</i> , 2002 , 2, 929-932	11.5	284
262	Controlled nanoscale doping of semiconductors via molecular monolayers. <i>Nature Materials</i> , 2008 , 7, 62-7	27	262
261	Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. <i>Nano Letters</i> , 2012 , 12, 1527-33	11.5	258
260	Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. <i>Advanced Materials</i> , 2017 , 29, 1701985	24	254
259	High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014 , 8, 4948-53	16.7	249
258	Ordered arrays of dual-diameter nanopillars for maximized optical absorption. <i>Nano Letters</i> , 2010 , 10, 3823-7	11.5	249
257	Carbon nanotube active-matrix backplanes for conformal electronics and sensors. <i>Nano Letters</i> , 2011 , 11, 5408-13	11.5	245
256	Carbon nanotube electronicsmoving forward. <i>Chemical Society Reviews</i> , 2013 , 42, 2592-609	58.5	243

(2001-2018)

255	Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. <i>Nature Photonics</i> , 2018 , 12, 601-607	33.9	226
254	p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10760-4	16.4	226
253	Photoactuators and motors based on carbon nanotubes with selective chirality distributions. <i>Nature Communications</i> , 2014 , 5, 2983	17.4	223
252	High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. <i>Nano Letters</i> , 2016 , 16, 800-6	11.5	218
251	Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. <i>ACS Sensors</i> , 2016 , 1, 866-874	9.2	216
250	2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. <i>Applied Physics Letters</i> , 2016 , 108, 083111	3.4	212
249	Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. <i>Nano Letters</i> , 2011 , 11, 2527-32	11.5	211
248	Metal-catalyzed crystallization of amorphous carbon to graphene. <i>Applied Physics Letters</i> , 2010 , 96, 063	131.Q	208
247	Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. <i>Advanced Materials</i> , 2016 , 28, 4053-8	24	206
246	Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 11066-70	11.5	205
245	Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. <i>Applied Physics Letters</i> , 2002 , 81, 913-915	3.4	205
244	Challenges and prospects of nanopillar-based solar cells. <i>Nano Research</i> , 2009 , 2, 829-843	10	199
243	Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1703-7	11.5	191
242	Passivating contacts for crystalline silicon solar cells. <i>Nature Energy</i> , 2019 , 4, 914-928	62.3	190
241	Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2016 , 16, 2786-91	11.5	187
240	Electrical contacts to carbon nanotubes down to 1nm in diameter. <i>Applied Physics Letters</i> , 2005 , 87, 173	1504	187
239	A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sensors, 2018, 3, 944	-952	183
238	Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. <i>Applied Physics Letters</i> , 2001 , 79, 4571-4573	3.4	182

237	Air stable p-doping of WSe2 by covalent functionalization. ACS Nano, 2014, 8, 10808-14	16.7	180
236	Highly deformable liquid-state heterojunction sensors. <i>Nature Communications</i> , 2014 , 5, 5032	17.4	176
235	Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. <i>Advanced Materials</i> , 2015 , 27, 1561-6	24	176
234	Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. <i>ACS Nano</i> , 2018 , 12, 7253-7263	16.7	175
233	A biomimetic eye with a hemispherical perovskite nanowire array retina. <i>Nature</i> , 2020 , 581, 278-282	50.4	172
232	Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6191-4	16.4	171
231	Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11774-5	16.4	165
230	Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices. <i>ACS Nano</i> , 2018 , 12, 6978-6987	16.7	163
229	Strain-engineered growth of two-dimensional materials. <i>Nature Communications</i> , 2017 , 8, 608	17.4	162
228	Methylxanthine Drug Monitoring with Wearable Sweat Sensors. <i>Advanced Materials</i> , 2018 , 30, e170744	12 24	159
227	Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. <i>ACS Nano</i> , 2014 , 8, 6265-72	16.7	149
226	Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment. <i>ACS Nano</i> , 2016 , 10, 6853-60	16.7	147
225	Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. <i>Science Advances</i> , 2019 , 5, eaaw9906	14.3	143
224	Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21635-21642	3.8	140
223	Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. <i>Science</i> , 2019 , 364, 468-471	33.3	139
222	Ballistic InAs nanowire transistors. <i>Nano Letters</i> , 2013 , 13, 555-8	11.5	138
221	Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 14671-7	9.5	134
220	Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. <i>Nano Letters</i> , 2013 , 13, 5615-8	11.5	134

(2007-2020)

219	Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. <i>Advanced Materials</i> , 2020 , 32, e1902083	24	128
218	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600013	6.8	124
217	Wafer-scale, sub-5 nm junction formation by monolayer doping and conventional spike annealing. <i>Nano Letters</i> , 2009 , 9, 725-30	11.5	123
216	Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. <i>Nature Communications</i> , 2016 , 7, 12446	17.4	117
215	Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. <i>ACS Nano</i> , 2017 , 11, 11724-11731	16.7	116
214	Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%. <i>ACS Energy Letters</i> , 2018 , 3, 508-513	20.1	115
213	High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. ACS Nano, 2016, 10, 6535-	4116.7	115
212	Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601863	21.8	114
211	Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 13408-10	11.5	114
210	ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. <i>Nano</i> , 2006 , 01, 1-13	1.1	113
209	Smart Actuators and Adhesives for Reconfigurable Matter. <i>Accounts of Chemical Research</i> , 2017 , 50, 69	1 <i>-3</i> 74032	109
208	Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 2308-2313	3.8	109
207	Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. <i>Sensors and Actuators B: Chemical</i> , 2010 , 145, 232-238	8.5	109
206	Engineering light outcoupling in 2D materials. <i>Nano Letters</i> , 2015 , 15, 1356-61	11.5	105
205	Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology. <i>Nano Letters</i> , 2004 , 4, 123-127	11.5	105
204	Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. <i>Energy and Environmental Science</i> , 2017 , 10, 2222-2230	35.4	104
203	Electrical properties and devices of large-diameter single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2002 , 80, 1064-1066	3.4	104
202	Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. <i>Applied Physics Letters</i> , 2007 , 91, 203104	3.4	103

201	Nanopillar photovoltaics: Materials, processes, and devices. <i>Nano Energy</i> , 2012 , 1, 132-144	17.1	100
200	Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. <i>Science Advances</i> , 2017 , 3, e1602557	14.3	98
199	Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. <i>Nature Materials</i> , 2013 , 12, 905-12	27	96
198	Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600241	21.8	95
197	. IEEE Transactions on Electron Devices, 2012 , 59, 12-19	2.9	94
196	Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. <i>ACS Nano</i> , 2010 , 4, 5855-60	16.7	94
195	Large-area and bright pulsed electroluminescence in monolayer semiconductors. <i>Nature Communications</i> , 2018 , 9, 1229	17.4	93
194	19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO Contact. <i>ACS Photonics</i> , 2014 , 1, 1245-1250	6.3	93
193	Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11942-3	16.4	92
192	A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. <i>ACS Sensors</i> , 2019 , 4, 1925-1933	9.2	91
191	Quantum confinement effects in nanoscale-thickness InAs membranes. <i>Nano Letters</i> , 2011 , 11, 5008-12	11.5	88
190	Conoral Thormal Toytusization Brocoss of MoS2 for Efficient Electrocatalytic Hydrogen Evolution		
	General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Nano Letters</i> , 2016 , 16, 4047-53	11.5	84
189		11.55.4	84
189 188	Reaction. <i>Nano Letters</i> , 2016 , 16, 4047-53 Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar		
	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. <i>Communications Physics</i> , 2018 , 1, Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. <i>ACS Energy Letters</i> , 2018 , 3, 125-131 Highly uniform and stable n-type carbon panotube transistors by using positively charged silicon	5.4	84
188	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. <i>Communications Physics</i> , 2018 , 1, Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. <i>ACS Energy Letters</i> , 2018 , 3, 125-131 Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. <i>Nano Letters</i> , 2015 , 15, 392-7 A fully roll-to-roll grayure-printed carbon nanotube-based active matrix for multi-touch sensors.	5.4	84
188 187	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. <i>Communications Physics</i> , 2018 , 1, Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. <i>ACS Energy Letters</i> , 2018 , 3, 125-131 Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. <i>Nano Letters</i> , 2015 , 15, 392-7 A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. <i>Scientific Reports</i> , 2015 , 5, 17707	5.4 20.1 11.5	8 ₄ 8 ₃ 8 ₂

183	Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2014 , 6, 8441-6	9.5	79	
182	Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. <i>Nano Letters</i> , 2016 , 16, 1925	- 3 25	77	
181	A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602606	21.8	76	
180	Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. <i>Nano Letters</i> , 2013 , 13, 5425-30	11.5	76	
179	Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors. <i>Nano Letters</i> , 2012 , 12, 2060-6	11.5	74	
178	III-V complementary metal-oxide-semiconductor electronics on silicon substrates. <i>Nano Letters</i> , 2012 , 12, 3592-5	11.5	74	
177	Wearable Sweat Band for Noninvasive Levodopa Monitoring. <i>Nano Letters</i> , 2019 , 19, 6346-6351	11.5	73	
176	Monolithic 3D CMOS Using Layered Semiconductors. <i>Advanced Materials</i> , 2016 , 28, 2547-54	24	72	
175	Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon. <i>IEEE Transactions on Electron Devices</i> , 2011 , 58, 3933-3939	2.9	72	
174	Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. <i>Advanced Functional Materials</i> , 2019 , 29, 1902521	15.6	71	
173	MoS2 Heterojunctions by Thickness Modulation. <i>Scientific Reports</i> , 2015 , 5, 10990	4.9	71	
172	3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature. <i>ACS Sensors</i> , 2017 , 2, 990-997	9.2	69	
171	Ultrathin body InAs tunneling field-effect transistors on Si substrates. <i>Applied Physics Letters</i> , 2011 , 98, 113105	3.4	69	
170	BiVO4 thin film photoanodes grown by chemical vapor deposition. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1651-7	3.6	68	
169	Short-channel transistors constructed with solution-processed carbon nanotubes. <i>ACS Nano</i> , 2013 , 7, 798-803	16.7	68	
168	Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. <i>Science Advances</i> , 2017 , 3, e1701661	14.3	67	
167	Artificial Photosynthesis on TiO2-Passivated InP Nanopillars. <i>Nano Letters</i> , 2015 , 15, 6177-81	11.5	67	
166	Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. <i>Nano Letters</i> , 2012 , 12, 4140-5	11.5	67	

165	Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics. <i>Applied Physics Letters</i> , 2010 , 96, 103116	3.4	67
164	Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. <i>Nano Research</i> , 2008 , 1, 32-39	10	67
163	Wafer-Scale Growth of WSe2 Monolayers Toward Phase-Engineered Hybrid WOx/WSe2 Films with Sub-ppb NOx Gas Sensing by a Low-Temperature Plasma-Assisted Selenization Process. <i>Chemistry of Materials</i> , 2017 , 29, 1587-1598	9.6	66
162	Black Ge based on crystalline/amorphous core/shell nanoneedle arrays. <i>Nano Letters</i> , 2010 , 10, 520-3	11.5	65
161	Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS by Fluoropolymer Encapsulation and Superacid Treatment. <i>ACS Nano</i> , 2017 , 11, 5179-5185	16.7	64
160	Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. <i>Applied Physics Letters</i> , 2013 , 102, 242101	3.4	64
159	Monolayer resist for patterned contact printing of aligned nanowire arrays. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2102-3	16.4	64
158	Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. <i>APL Materials</i> , 2014 , 2, 092504	5.7	63
157	Nanoscale doping of InAs via sulfur monolayers. <i>Applied Physics Letters</i> , 2009 , 95, 072108	3.4	63
156	Evaporated tellurium thin films for p-type field-effect transistors and circuits. <i>Nature Nanotechnology</i> , 2020 , 15, 53-58	28.7	63
155	Quantum of optical absorption in two-dimensional semiconductors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11688-91	11.5	61
154	Observation of degenerate one-dimensional sub-bands in cylindrical InAs nanowires. <i>Nano Letters</i> , 2012 , 12, 1340-3	11.5	60
153	Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. <i>Energy and Environmental Science</i> , 2019 , 12, 1068-1077	35.4	58
152	Electrical Properties of Synthesized Large-Area MoSIField-Effect Transistors Fabricated with Inkjet-Printed Contacts. <i>ACS Nano</i> , 2016 , 10, 2819-26	16.7	58
151	A wearable patch for continuous analysis of thermoregulatory sweat at rest. <i>Nature Communications</i> , 2021 , 12, 1823	17.4	57
150	Hybrid core-shell nanowire forests as self-selective chemical connectors. <i>Nano Letters</i> , 2009 , 9, 2054-8	11.5	56
149	Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction. <i>Nano Letters</i> , 2008 , 8, 4528-33	11.5	56
148	Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11188-94	16.4	55

147	Fully printed flexible and disposable wireless cyclic voltammetry tag. Scientific Reports, 2015, 5, 8105	4.9	55
146	Contact printing of compositionally graded CdS(x)Se(1-x) nanowire parallel arrays for tunable photodetectors. <i>Nanotechnology</i> , 2012 , 23, 045201	3.4	54
145	Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. Nano Letters, 2010, 10, 509-	1:3 .5	54
144	Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites. <i>Nano Letters</i> , 2018 , 18, 3473-3480	11.5	52
143	A direct thin-film path towards low-cost large-area III-V photovoltaics. <i>Scientific Reports</i> , 2013 , 3, 2275	4.9	52
142	Calcium contacts to n-type crystalline silicon solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 636-644	6.8	50
141	Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors. <i>Advanced Materials</i> , 2015 , 27, 6090-5	24	49
140	Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. <i>Nano Letters</i> , 2011 , 11, 3425-30	11.5	49
139	Synthetic WSe monolayers with high photoluminescence quantum yield. Science Advances, 2019, 5, eaau	472/8	48
138	Prospect of tunneling green transistor for 0.1V CMOS 2010 ,		47
138	Donant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. Advanced Energy Materials	21.8	47 47
	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied</i>	21.8	
137	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 203101 Optical and electrical properties of two-dimensional palladium diselenide. <i>Applied Physics Letters</i> .		47
137	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 203101 Optical and electrical properties of two-dimensional palladium diselenide. <i>Applied Physics Letters</i> , 2019 , 114, 253102 Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined	3.4	47 46
137 136 135	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 203101 Optical and electrical properties of two-dimensional palladium diselenide. <i>Applied Physics Letters</i> , 2019 , 114, 253102 Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. <i>Nano Letters</i> , 2019 , 19, 2850-2857	3.4	47 46 44
137 136 135	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 203101 Optical and electrical properties of two-dimensional palladium diselenide. <i>Applied Physics Letters</i> , 2019 , 114, 253102 Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. <i>Nano Letters</i> , 2019 , 19, 2850-2857 Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. <i>Scientific Reports</i> , 2015 , 5, 16028 Temperature-adaptive radiative coating for all-season household thermal regulation. <i>Science</i> , 2021	3.4	47 46 44 44
137 136 135 134	Dopant-Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1803367 Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. <i>Applied Physics Letters</i> , 2011 , 98, 203101 Optical and electrical properties of two-dimensional palladium diselenide. <i>Applied Physics Letters</i> , 2019 , 114, 253102 Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. <i>Nano Letters</i> , 2019 , 19, 2850-2857 Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. <i>Scientific Reports</i> , 2015 , 5, 16028 Temperature-adaptive radiative coating for all-season household thermal regulation <i>Science</i> , 2021 , 374, 1504-1509 Solution-Processed Transparent Self-Powered p-CuS-ZnS/n-ZnO UV Photodiode. <i>Physica Status</i>	3·4 11.5 4·9	47 46 44 44 43

129	Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small, 2010, 6, 22-6	11	41
128	The 2008 Kavli Prize in Nanoscience: carbon nanotubes. ACS Nano, 2008, 2, 1329-35	16.7	40
127	Glove-based sensors for multimodal monitoring of natural sweat. <i>Science Advances</i> , 2020 , 6, eabb8308	14.3	40
126	Nanoscale semiconductor "X" on substrate "Y"processes, devices, and applications. <i>Advanced Materials</i> , 2011 , 23, 3115-27	24	39
125	Performance enhancement of a graphene-zinc phosphide solar cell using the electric field-effect. <i>Nano Letters</i> , 2014 , 14, 4280-5	11.5	38
124	Physical and Chemical Sensing With Electronic Skin. <i>Proceedings of the IEEE</i> , 2019 , 107, 2155-2167	14.3	37
123	Direct growth of single-crystalline III-V semiconductors on amorphous substrates. <i>Nature Communications</i> , 2016 , 7, 10502	17.4	37
122	Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. <i>Applied Physics Letters</i> , 2011 , 99, 103507	3.4	37
121	Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. Journal of Physical Chemistry C, 2012 , 116, 9750-9754	3.8	36
120	Strong optical response and light emission from a monolayer molecular crystal. <i>Nature Communications</i> , 2019 , 10, 5589	17.4	36
119	p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production. <i>Angewandte Chemie</i> , 2012 , 124, 10918-10922	3.6	34
118	Superacid Passivation of Crystalline Silicon Surfaces. <i>ACS Applied Materials & Discourse (Control of Control </i>	9.5	32
117	Multifunctional, flexible electronic systems based on engineered nanostructured materials. <i>Nanotechnology</i> , 2012 , 23, 344001	3.4	32
116	Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2177-82	6.4	31
115	Spin-On Organic Polymer Dopants for Silicon. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3741-3746	6.4	31
114	Superacid-Treated Silicon Surfaces: Extending the Limit of Carrier Lifetime for Photovoltaic Applications. <i>IEEE Journal of Photovoltaics</i> , 2017 , 7, 1574-1583	3.7	31
113	Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7,	2.2	31
112	Fermi level stabilization and band edge energies in CdxZn1\(\textbf{N}\)O alloys. <i>Journal of Applied Physics</i> , 2014 , 115, 233708	2.5	31

111	Phosphine oxide monolayers on SiO2 surfaces. Angewandte Chemie - International Edition, 2008, 47, 44	40 . 24	31
110	Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2. Journal of Physical Chemistry C, 2020 , 124, 12175-12184	3.8	31
109	Trace-Level, Multi-Gas Detection for Food Quality Assessment Based on Decorated Silicon Transistor Arrays. <i>Advanced Materials</i> , 2020 , 32, e1908385	24	31
108	A Wearable Nutrition Tracker. <i>Advanced Materials</i> , 2021 , 33, e2006444	24	31
107	Hierarchical polymer micropillar arrays decorated with ZnO nanowires. <i>Nanotechnology</i> , 2010 , 21, 2953	8 0 <u>\$</u> .4	30
106	Fully R2R-Printed Carbon-Nanotube-Based Limitless Length of Flexible Active-Matrix for Electrophoretic Display Application. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901431	6.4	29
105	High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics. <i>Applied Physics Letters</i> , 2013 , 102, 153513	3.4	29
104	Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors. <i>Advanced Functional Materials</i> , 2009 , 19, 3098-3102	15.6	29
103	A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na concentration. <i>Lab on A Chip</i> , 2019 , 19, 3179-3189	7.2	28
102	Shape-controlled synthesis of single-crystalline nanopillar arrays by template-assisted vapor-liquid-solid process. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13972-4	16.4	28
101	Actively variable-spectrum optoelectronics with black phosphorus. <i>Nature</i> , 2021 , 596, 232-237	50.4	28
100	Nicotine Monitoring with a Wearable Sweat Band. <i>ACS Sensors</i> , 2020 , 5, 1831-1837	9.2	27
99	Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers. <i>ACS Nano</i> , 2018 , 12, 2948-2954	16.7	27
98	Intrinsic Optoelectronic Characteristics of MoS Phototransistors a Fully Transparent van der Waals Heterostructure. <i>ACS Nano</i> , 2019 , 13, 9638-9646	16.7	27
97	Deterministic Nucleation of InP on Metal Foils with the Thin-Film VaporLiquidBolid Growth Mode. <i>Chemistry of Materials</i> , 2014 , 26, 1340-1344	9.6	25
96	Thermoresponsive chemical connectors based on hybrid nanowire forests. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 616-9	16.4	25
95	Temperature and Humidity Stable Alkali/Alkaline-Earth Metal Carbonates as Electron Heterocontacts for Silicon Photovoltaics. <i>Advanced Energy Materials</i> , 2018 , 8, 1800743	21.8	25
94	Comparative study of solution-processed carbon nanotube network transistors. <i>Applied Physics Letters</i> , 2012 , 101, 112104	3.4	23

93	Neutral Exciton Diffusion in Monolayer MoS. ACS Nano, 2020, 14, 13433-13440	16.7	23
92	Wearable Biosensors for Body Computing. <i>Advanced Functional Materials</i> , 2020 , 31, 2008087	15.6	22
91	Ultrathin-Body High-Mobility InAsSb-on-Insulator Field-Effect Transistors. <i>IEEE Electron Device Letters</i> , 2012 , 33, 504-506	4.4	22
90	Rationally Designed, Three-Dimensional Carbon Nanotube Back-Contacts for Efficient Solar Devices. <i>Advanced Energy Materials</i> , 2011 , 1, 1040-1045	21.8	22
89	Evaporated Se Te Thin Films with Tunable Bandgaps for Short-Wave Infrared Photodetectors. <i>Advanced Materials</i> , 2020 , 32, e2001329	24	22
88	Hybrid core-multishell nanowire forests for electrical connector applications. <i>Applied Physics Letters</i> , 2009 , 94, 263110	3.4	21
87	Improved photoswitching response times of MoS2 field-effect transistors by stacking p-type copper phthalocyanine layer. <i>Applied Physics Letters</i> , 2016 , 109, 183502	3.4	21
86	Dip Coating Passivation of Crystalline Silicon by Lewis Acids. <i>ACS Nano</i> , 2019 , 13, 3723-3729	16.7	20
85	Vertically aligned tungsten oxide nanorod film with enhanced performance in photoluminescence humidity sensing. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 708-713	8.5	20
84	Nanoscale structural engineering via phase segregation: Au-Ge system. <i>Nano Letters</i> , 2010 , 10, 393-7	11.5	20
83	Generic nanomaterial positioning by carrier and stationary phase design. <i>Nano Letters</i> , 2007 , 7, 2764-8	11.5	20
82	Highly Reliable Superhydrophobic Protection for Organic Field-Effect Transistors by Fluoroalkylsilane-Coated TiO Nanoparticles. <i>ACS Nano</i> , 2018 , 12, 11062-11069	16.7	20
81	Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%. <i>ACS Energy Letters</i> , 2020 , 5, 897-902	20.1	19
80	Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator. <i>Applied Physics Letters</i> , 2011 , 98, 012111	3.4	19
79	Quantum Well InAs/AlSb/GaSb Vertical Tunnel FET With HSQ Mechanical Support. <i>IEEE Nanotechnology Magazine</i> , 2015 , 14, 580-584	2.6	18
78	Oriented Growth of Gold Nanowires on MoS2. Advanced Functional Materials, 2015, 25, 6257-6264	15.6	18
77	Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. <i>Scientific Reports</i> , 2016 , 6, 33967	4.9	18
76	Determining Atomic-Scale Structure and Composition of Organo-Lead Halide Perovskites by Combining High-Resolution X-ray Absorption Spectroscopy and First-Principles Calculations. <i>ACS Energy Letters</i> , 2017 , 2, 1183-1189	20.1	17

(2015-2017)

75	Nanoscale Junction Formation by Gas-Phase Monolayer Doping. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20648-20655	9.5	17	
74	Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant. <i>Nanoscale</i> , 2016 , 8, 19876-19881	7.7	17	
73	Scanning Probe Lithography Patterning of Monolayer Semiconductors and Application in Quantifying Edge Recombination. <i>Advanced Materials</i> , 2019 , 31, e1900136	24	17	
72	Surface Charge Transfer Doping of IIIIV Nanostructures. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 178	453.18784	49 ₁₇	
71	High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition. <i>Journal of Applied Physics</i> , 2012 , 111, 123112	2.5	17	
70	Zirconium oxide surface passivation of crystalline silicon. <i>Applied Physics Letters</i> , 2018 , 112, 201604	3.4	17	
69	Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2654-9	3.6	16	
68	Enhanced Near-Bandgap Response in InP Nanopillar Solar Cells. Advanced Energy Materials, 2014 , 4, 14	40 00 61	16	
67	Compliant substrate epitaxy: Au on MoS2. Physical Review B, 2016 , 93,	3.3	15	
66	Morphological and spatial control of InP growth using closed-space sublimation. <i>Journal of Applied Physics</i> , 2012 , 112, 123102	2.5	15	
65	Analysis of the interface characteristics of CVD-grown monolayer MoS by noise measurements. <i>Nanotechnology</i> , 2017 , 28, 145702	3.4	13	
64	Elimination of Response to Relative Humidity Changes in Chemical-Sensitive Field-Effect Transistors. <i>ACS Sensors</i> , 2019 , 4, 1857-1863	9.2	13	
63	Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator. <i>Scientific Reports</i> , 2020 , 10, 5377	4.9	13	
62	Electrodeposition of High-Purity Indium Thin Films and Its Application to Indium Phosphide Solar Cells. <i>Journal of the Electrochemical Society</i> , 2014 , 161, D794-D800	3.9	13	
61	Development of a compact neutron source based on field ionization processes. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2011 , 29, 02B107	1.3	13	
60	Phosphine Oxide Monolayers on SiO2 Surfaces. <i>Angewandte Chemie</i> , 2008 , 120, 4512-4514	3.6	13	
59	Spatially Precise Transfer of Patterned Monolayer WS2 and MoS2 with Features Larger than 104 lb2 Directly from Multilayer Sources. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 407-416	4	13	
58	Photovoltaic Material Characterization With Steady State and Transient Photoluminescence. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 282-287	3.7	12	

57	III-Vs at scale: a PV manufacturing cost analysis of the thin film vaporliquid growth mode. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 871-878	6.8	12
56	Ultrafast Spontaneous Emission from a Slot-Antenna Coupled WSe2 Monolayer. <i>ACS Photonics</i> , 2018 , 5, 2701-2705	6.3	12
55	Two-dimensional to three-dimensional tunneling in InAs/AlSb/GaSb quantum well heterojunctions. <i>Journal of Applied Physics</i> , 2013 , 114, 024502	2.5	12
54	Measuring the Edge Recombination Velocity of Monolayer Semiconductors. <i>Nano Letters</i> , 2017 , 17, 53	56 <u>r</u> 5. 3 6	0 12
53	Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. <i>Science</i> , 2021 , 373, 448-452	33.3	12
52	Wearable sweat biosensors 2016 ,		12
51	Transistor-Based Work-Function Measurement of Metal-Organic Frameworks for Ultra-Low-Power, Rationally Designed Chemical Sensors. <i>Chemistry - A European Journal</i> , 2019 , 25, 13176-13183	4.8	11
50	Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates. <i>Advanced Energy Materials</i> , 2015 , 5, 1501337	21.8	11
49	A compact neutron generator using a field ionization source. <i>Review of Scientific Instruments</i> , 2012 , 83, 02B312	1.7	11
48	Integration of amorphous ferromagnetic oxides with multiferroic materials for room temperature magnetoelectric spintronics. <i>Scientific Reports</i> , 2020 , 10, 3583	4.9	10
47	Anomalously Suppressed Thermal Conduction by Electron-Phonon Coupling in Charge-Density-Wave Tantalum Disulfide. <i>Advanced Science</i> , 2020 , 7, 1902071	13.6	10
46	Thermal Stability of Hole-Selective Tungsten Oxide: In Situ Transmission Electron Microscopy Study. <i>Scientific Reports</i> , 2018 , 8, 12651	4.9	10
45	Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma. <i>Thin Solid Films</i> , 2013 , 534, 488-491	2.2	10
44	Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60 mV/decade Tunnel Transistors 2006 ,		10
43	Survey of dopant-free carrier-selective contacts for silicon solar cells 2016 ,		10
42	Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films. <i>Chemistry of Materials</i> , 2016 , 28, 4602-4607	9.6	9
41	Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates. <i>ACS Nano</i> , 2021 , 15, 6573-6581	16.7	9
40	LightMatter Interaction Enhancement in Anisotropic 2D Black Phosphorus via Polarization-Tailoring Nano-Optics. <i>ACS Photonics</i> , 2021 , 8, 1120-1128	6.3	9

(2017-2020)

39	Extreme In-Plane Thermal Conductivity Anisotropy in Titanium Trisulfide Caused by Heat-Carrying Optical Phonons. <i>Nano Letters</i> , 2020 , 20, 5221-5227	11.5	8
38	2D layered materials: From materials properties to device applications 2015 ,		8
37	Centimeter-Scale and Visible Wavelength Monolayer Light-Emitting Devices. <i>Advanced Functional Materials</i> , 2020 , 30, 1907941	15.6	8
36	PCBM-Grafted MWNT for Enhanced Electron Transport in Polymer Solar Cells. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A237	3.9	7
35	Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. <i>Journal of Micro and Nano-Manufacturing</i> , 2019 , 7,	1.3	7
34	Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016). <i>Advanced Materials</i> , 2016 , 28, 4396	24	7
33	Universal Inverse Scaling of Exciton-Exciton Annihilation Coefficient with Exciton Lifetime. <i>Nano Letters</i> , 2021 , 21, 424-429	11.5	7
32	InAs FinFETs Performance Enhancement by Superacid Surface Treatment. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 1856-1861	2.9	6
31	Microchannel contacting of crystalline silicon solar cells. Scientific Reports, 2017, 7, 9085	4.9	6
30	Shape-controlled single-crystal growth of InP at low temperatures down to 220 °C. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 902-906	11.5	6
29	A generic electroluminescent device for emission from infrared to ultraviolet wavelengths. <i>Nature Electronics</i> , 2020 , 3, 612-621	28.4	6
28	Bright electroluminescence in ambient conditions from WSe2 p-n diodes using pulsed injection. <i>Applied Physics Letters</i> , 2019 , 115, 011103	3.4	5
27	Graphitic interfacial layer to carbon nanotube for low electrical contact resistance 2010,		5
26	Tellurium Single-Crystal Arrays by Low-Temperature Evaporation and Crystallization. <i>Advanced Materials</i> , 2021 , 33, e2100860	24	5
25	Gate Quantum Capacitance Effects in Nanoscale Transistors. <i>Nano Letters</i> , 2019 , 19, 7130-7137	11.5	4
24	Photoluminescence imaging characterization of thin-film InP 2015,		4
23	Flexible Electronics: Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis (Adv. Mater. 15/2020). <i>Advanced Materials</i> , 2020 , 32, 2070115	24	4
22	Nanoscience and Nanotechnology Cross Borders. <i>ACS Nano</i> , 2017 , 11, 1123-1126	16.7	3

21	In Situ Transmission Electron Microscopy Study of Molybdenum Oxide Contacts for Silicon Solar Cells. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1800998	1.6	3
20	Thermal stability for Te-based devices. <i>Applied Physics Letters</i> , 2020 , 117, 192104	3.4	3
19	High-gain monolithic 3D CMOS inverter using layered semiconductors. <i>Applied Physics Letters</i> , 2017 , 111, 222101	3.4	3
18	Resistive switching of carbon-based RRAM with CNT electrodes for ultra-dense memory 2010 ,		3
17	Monolayer doping and diameter-dependent electron mobility assessment of nanowires 2009,		3
16	Molecular Materials with Short Radiative Lifetime for High-Speed Light-Emitting Devices. <i>Matter</i> , 2020 , 3, 1832-1844	12.7	3
15	Copper Tetracyanoquinodimethane (CuTCNQ): A Metal-Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 38544-38552	9.5	3
14	Wearable Devices: Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring (Adv. Mater. 39/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2
13	Series resistance and mobility in mechanically-exfoliated layered transition metal dichalcogenide MOSFETs 2014 ,		2
12	Preface to Special Topic: Selected Papers from the International Conference on Flexible and Printed Electronics, Jeju Island, Korea, 2009. <i>Journal of Applied Physics</i> , 2010 , 108, 102701	2.5	2
11	Thermoresponsive Chemical Connectors Based on Hybrid Nanowire Forests. <i>Angewandte Chemie</i> , 2010 , 122, 626-629	3.6	2
10	Wearable Biosensors for Body Computing (Adv. Funct. Mater. 39/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170290	15.6	2
9	Catalyst-dependent morphological evolution by interfacial stress in crystallinellmorphous corellhell germanium nanowires. <i>RSC Advances</i> , 2015 , 5, 28454-28459	3.7	1
8	Carbon Nanotube Field-Effect Transistors. <i>Integrated Circuits and Systems</i> , 2009 , 63-86	0.2	1
7	Self-aligned 40-nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade 2005 ,		1
6	Orientated Growth of Ultrathin Tellurium by van der Waals Epitaxy. Advanced Materials Interfaces,2101	5 4 Ø	1
5	Improved Hydrogen Sensitivity and Selectivity in PdO with Metal-Organic Framework Membrane. Journal of the Electrochemical Society, 2020 , 167, 147503	3.9	1
4	Enhanced Spontaneous Emission from an Optical Antenna Coupled WSe2 Monolayer 2015 ,		1

LIST OF PUBLICATIONS

3	Performance Limits of an Alternating Current Electroluminescent Device. <i>Advanced Materials</i> , 2021 , 33, e2005635	24	1
2	A Resonantly Driven, Electroluminescent Metal Oxide Semiconductor Capacitor with High Power Efficiency. <i>ACS Nano</i> , 2021 , 15, 15210-15217	16.7	1
1	Monolayer Semiconductors: Scanning Probe Lithography Patterning of Monolayer Semiconductors and Application in Quantifying Edge Recombination (Adv. Mater. 48/2019). <i>Advanced Materials</i> , 2019 , 31, 1970340	24	