
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1060048/publications.pdf Version: 2024-02-01



Διιίλνεν

| #  | Article                                                                                                                                                                                                       | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529, 509-514.                                                                                            | 27.8 | 3,508     |
| 2  | Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424, 654-657.                                                                                                                               | 27.8 | 2,883     |
| 3  | High-Performance Single Layered WSe <sub>2</sub> p-FETs with Chemically Doped Contacts. Nano<br>Letters, 2012, 12, 3788-3792.                                                                                 | 9.1  | 1,547     |
| 4  | Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9,<br>821-826.                                                                                           | 27.5 | 1,162     |
| 5  | MoS <sub>2</sub> transistors with 1-nanometer gate lengths. Science, 2016, 354, 99-102.                                                                                                                       | 12.6 | 1,140     |
| 6  | User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 2013, 12,<br>899-904.                                                                                            | 27.5 | 1,044     |
| 7  | Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature<br>Materials, 2009, 8, 648-653.                                                                                  | 27.5 | 997       |
| 8  | Near-unity photoluminescence quantum yield in MoS <sub>2</sub> . Science, 2015, 350, 1065-1068.                                                                                                               | 12.6 | 993       |
| 9  | Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6198-6202. | 7.1  | 970       |
| 10 | Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano Letters, 2003, 3, 347-351.                                               | 9.1  | 953       |
| 11 | Wearable sweat sensors. Nature Electronics, 2018, 1, 160-171.                                                                                                                                                 | 26.0 | 947       |
| 12 | High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Materials, 2002, 1,<br>241-246.                                                                                           | 27.5 | 928       |
| 13 | Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Letters, 2003, 3, 193-198.                                                                                             | 9.1  | 890       |
| 14 | Flexible Electronics toward Wearable Sensing. Accounts of Chemical Research, 2019, 52, 523-533.                                                                                                               | 15.6 | 713       |
| 15 | Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Letters, 2013, 13, 1991-1995.                                                                                            | 9.1  | 651       |
| 16 | Air-Stable Surface Charge Transfer Doping of MoS <sub>2</sub> by Benzyl Viologen. Journal of the<br>American Chemical Society, 2014, 136, 7853-7856.                                                          | 13.7 | 593       |
| 17 | Field-Effect Transistors Built from All Two-Dimensional Material Components. ACS Nano, 2014, 8, 6259-6264.                                                                                                    | 14.6 | 582       |
| 18 | Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics. Nano<br>Letters, 2007, 7, 773-777.                                                                                   | 9.1  | 573       |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a<br>fully integrated wearable platform. Proceedings of the National Academy of Sciences of the United<br>States of America, 2017, 114, 4625-4630. | 7.1  | 573       |
| 20 | Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe <sub>2</sub> . Nano Letters, 2014, 14, 4592-4597.                                                                                                                            | 9.1  | 572       |
| 21 | Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors. Journal of the American Chemical Society, 2001, 123, 11512-11513.                                                                                         | 13.7 | 570       |
| 22 | Dual-Gated MoS <sub>2</sub> /WSe <sub>2</sub> van der Waals Tunnel Diodes and Transistors. ACS<br>Nano, 2015, 9, 2071-2079.                                                                                                                         | 14.6 | 560       |
| 23 | High-Field Quasiballistic Transport in Short Carbon Nanotubes. Physical Review Letters, 2004, 92, 106804.                                                                                                                                           | 7.8  | 543       |
| 24 | Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano<br>Letters, 2008, 8, 20-25.                                                                                                                          | 9.1  | 542       |
| 25 | Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. Nano Letters, 2004, 4, 1319-1322.                                                                                                                           | 9.1  | 505       |
| 26 | Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics.<br>Nano Letters, 2004, 4, 447-450.                                                                                                             | 9.1  | 498       |
| 27 | MoS <sub>2</sub> P-type Transistors and Diodes Enabled by High Work Function<br>MoO <sub><i>x</i></sub> Contacts. Nano Letters, 2014, 14, 1337-1342.                                                                                                | 9.1  | 487       |
| 28 | Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD<br>Method. Nano Letters, 2004, 4, 317-321.                                                                                                            | 9.1  | 485       |
| 29 | A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca <sup>2+</sup><br>and pH. ACS Nano, 2016, 10, 7216-7224.                                                                                                           | 14.6 | 480       |
| 30 | Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel<br>Polymer Composites. Nano Letters, 2011, 11, 3239-3244.                                                                                              | 9.1  | 476       |
| 31 | Hole Selective MoO <sub><i>x</i></sub> Contact for Silicon Solar Cells. Nano Letters, 2014, 14, 967-971.                                                                                                                                            | 9.1  | 476       |
| 32 | Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nature Energy, 2016, 1, .                                                                                                                                                 | 39.5 | 461       |
| 33 | High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts.<br>Nano Letters, 2005, 5, 345-348.                                                                                                                 | 9.1  | 453       |
| 34 | Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010, 10, 1542-1548.                                                                                                                                             | 9.1  | 439       |
| 35 | Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring.<br>Advanced Materials, 2017, 29, 1701985.                                                                                                                  | 21.0 | 431       |
| 36 | Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications, 2015, 6,<br>7447.                                                                                                                                       | 12.8 | 429       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Applied Physics Letters, 2003, 83, 2432-2434.                                                                                   | 3.3  | 424       |
| 38 | Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts. Nano Letters, 2003, 3, 1541-1544.                                                                                                            | 9.1  | 416       |
| 39 | 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001.                                     | 4.4  | 408       |
| 40 | Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and<br>oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>16141-16145. | 7.1  | 403       |
| 41 | A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278-282.                                                                                                                     | 27.8 | 392       |
| 42 | Passivating contacts for crystalline silicon solar cells. Nature Energy, 2019, 4, 914-928.                                                                                                                              | 39.5 | 374       |
| 43 | Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors.<br>Nature, 2010, 468, 286-289.                                                                                         | 27.8 | 373       |
| 44 | Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates. Nano<br>Letters, 2013, 13, 3864-3869.                                                                                     | 9.1  | 372       |
| 45 | Printed Carbon Nanotube Electronics and Sensor Systems. Advanced Materials, 2016, 28, 4397-4414.                                                                                                                        | 21.0 | 369       |
| 46 | Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 2018, 12, 601-607.                                               | 31.4 | 366       |
| 47 | Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials, 2009, 21, 3730-3743.                                                                                                          | 21.0 | 363       |
| 48 | Silicon heterojunction solar cell with passivated hole selective MoOx contact. Applied Physics<br>Letters, 2014, 104, .                                                                                                 | 3.3  | 363       |
| 49 | Diameter-Dependent Electron Mobility of InAs Nanowires. Nano Letters, 2009, 9, 360-365.                                                                                                                                 | 9.1  | 353       |
| 50 | Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators. Nano<br>Letters, 2002, 2, 929-932.                                                                                           | 9.1  | 325       |
| 51 | Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Materials, 2008, 7, 62-67.                                                                                                               | 27.5 | 311       |
| 52 | Goldâ€Mediated Exfoliation of Ultralarge Optoelectronicallyâ€Perfect Monolayers. Advanced Materials,<br>2016, 28, 4053-4058.                                                                                            | 21.0 | 307       |
| 53 | Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors.<br>ACS Nano, 2018, 12, 7253-7263.                                                                                       | 14.6 | 298       |
| 54 | Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sensors, 2016, 1, 866-874.                                                                                                        | 7.8  | 297       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube<br>Networks for Digital, Analog, and Radio-Frequency Applications. Nano Letters, 2012, 12, 1527-1533.                           | 9.1  | 292       |
| 56 | A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sensors, 2018, 3, 944-952.                                                                                                                    | 7.8  | 285       |
| 57 | High-Gain Inverters Based on WSe <sub>2</sub> Complementary Field-Effect Transistors. ACS Nano, 2014, 8, 4948-4953.                                                                                                           | 14.6 | 284       |
| 58 | Carbon nanotube electronics – moving forward. Chemical Society Reviews, 2013, 42, 2592-2609.                                                                                                                                  | 38.1 | 276       |
| 59 | Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices. ACS Nano, 2018, 12, 6978-6987.                                                                                                         | 14.6 | 275       |
| 60 | Carbon Nanotube Active-Matrix Backplanes for Conformal Electronics and Sensors. Nano Letters, 2011, 11, 5408-5413.                                                                                                            | 9.1  | 270       |
| 61 | Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Letters, 2010, 10, 3823-3827.                                                                                                              | 9.1  | 269       |
| 62 | Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications, 2014, 5, 2983.                                                                                             | 12.8 | 269       |
| 63 | High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide<br>Perovskites. Nano Letters, 2016, 16, 800-806.                                                                                     | 9.1  | 269       |
| 64 | Strain-engineered growth of two-dimensional materials. Nature Communications, 2017, 8, 608.                                                                                                                                   | 12.8 | 253       |
| 65 | 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Applied Physics Letters, 2016, 108, .                                                                                                             | 3.3  | 252       |
| 66 | Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 2021, 374, 1504-1509.                                                                                                            | 12.6 | 251       |
| 67 | pâ€Type InP Nanopillar Photocathodes for Efficient Solarâ€Driven Hydrogen Production. Angewandte<br>Chemie - International Edition, 2012, 51, 10760-10764.                                                                    | 13.8 | 245       |
| 68 | Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors.<br>Science, 2019, 364, 468-471.                                                                                                | 12.6 | 243       |
| 69 | Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Applied Physics Letters, 2002, 81, 913-915.                                                                            | 3.3  | 237       |
| 70 | Metal-catalyzed crystallization of amorphous carbon to graphene. Applied Physics Letters, 2010, 96, .                                                                                                                         | 3.3  | 234       |
| 71 | Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle<br>composite films. Proceedings of the National Academy of Sciences of the United States of America,<br>2014, 111, 1703-1707. | 7.1  | 234       |
| 72 | Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Science Advances, 2019, 5, eaaw9906.                                                                        | 10.3 | 234       |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the United States of America, 2008, 105, 11066-11070.                                     | 7.1  | 233       |
| 74 | Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition<br>Metal Dichalcogenides. Nano Letters, 2016, 16, 2786-2791.                                | 9.1  | 233       |
| 75 | Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires.<br>Nano Letters, 2011, 11, 2527-2532.                                                         | 9.1  | 230       |
| 76 | Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Advanced Materials, 2018, 30, e1707442.                                                                                            | 21.0 | 226       |
| 77 | Challenges and prospects of nanopillar-based solar cells. Nano Research, 2009, 2, 829.                                                                                                         | 10.4 | 223       |
| 78 | Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014, 5, 5032.                                                                                                   | 12.8 | 221       |
| 79 | Air Stable p-Doping of WSe <sub>2</sub> by Covalent Functionalization. ACS Nano, 2014, 8, 10808-10814.                                                                                         | 14.6 | 208       |
| 80 | Electrical contacts to carbon nanotubes down to 1nm in diameter. Applied Physics Letters, 2005, 87, 173101.                                                                                    | 3.3  | 205       |
| 81 | Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society, 2014, 136, 6191-6194. | 13.7 | 204       |
| 82 | Air-Stable n-Doping of WSe <sub>2</sub> by Anion Vacancy Formation with Mild Plasma Treatment. ACS<br>Nano, 2016, 10, 6853-6860.                                                               | 14.6 | 202       |
| 83 | Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. Advanced Materials, 2020, 32, e1902083.                                                                              | 21.0 | 200       |
| 84 | Largeâ€Area Compliant Tactile Sensors Using Printed Carbon Nanotube Activeâ€Matrix Backplanes.<br>Advanced Materials, 2015, 27, 1561-1566.                                                     | 21.0 | 198       |
| 85 | Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. Applied Physics Letters, 2001, 79, 4571-4573.                                                                        | 3.3  | 195       |
| 86 | Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied<br>Materials & Interfaces, 2016, 8, 14671-14677.                                               | 8.0  | 188       |
| 87 | Miniature Organic Transistors with Carbon Nanotubes as Quasi-One-Dimensional Electrodes. Journal of the American Chemical Society, 2004, 126, 11774-11775.                                     | 13.7 | 184       |
| 88 | Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys. ACS Nano, 2017, 11,<br>11724-11731.                                                                                | 14.6 | 184       |
| 89 | A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sensors, 2019, 4, 1925-1933.                                                                       | 7.8  | 184       |
| 90 | A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nature<br>Communications, 2021, 12, 1823.                                                                          | 12.8 | 181       |

| #   | Article                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Conductive and Stable Magnesium Oxide Electron‧elective Contacts for Efficient Silicon Solar Cells.<br>Advanced Energy Materials, 2017, 7, 1601863.         | 19.5 | 174       |
| 92  | Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments. ACS Nano, 2014, 8, 6265-6272.                                   | 14.6 | 173       |
| 93  | Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems.<br>Advanced Materials Technologies, 2016, 1, 1600013.            | 5.8  | 167       |
| 94  | Stable Dopant-Free Asymmetric Heterocontact Silicon Solar Cells with Efficiencies above 20%. ACS Energy Letters, 2018, 3, 508-513.                          | 17.4 | 164       |
| 95  | Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2013, 117, 21635-21642.                     | 3.1  | 162       |
| 96  | Ballistic InAs Nanowire Transistors. Nano Letters, 2013, 13, 555-558.                                                                                       | 9.1  | 155       |
| 97  | Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nature<br>Nanotechnology, 2020, 15, 53-58.                                | 31.5 | 153       |
| 98  | Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen<br>Production. Nano Letters, 2013, 13, 5615-5618.                  | 9.1  | 151       |
| 99  | Smart Actuators and Adhesives for Reconfigurable Matter. Accounts of Chemical Research, 2017, 50, 691-702.                                                  | 15.6 | 151       |
| 100 | Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing.<br>Nano Letters, 2009, 9, 725-730.                           | 9.1  | 148       |
| 101 | Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nature<br>Communications, 2018, 9, 1229.                                      | 12.8 | 146       |
| 102 | Efficient solar-driven electrochemical CO <sub>2</sub> reduction to hydrocarbons and oxygenates.<br>Energy and Environmental Science, 2017, 10, 2222-2230.  | 30.8 | 145       |
| 103 | ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. Nano, 2006, 01, 1-13.                                                     | 1.0  | 142       |
| 104 | Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy, 2012, 1, 132-144.                                                                 | 16.0 | 142       |
| 105 | Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors.<br>Science Advances, 2017, 3, e1602557.                  | 10.3 | 142       |
| 106 | High Luminescence Efficiency in MoS <sub>2</sub> Grown by Chemical Vapor Deposition. ACS Nano, 2016, 10, 6535-6541.                                         | 14.6 | 140       |
| 107 | Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 2016, 7, 12446. | 12.8 | 139       |
| 108 | Engineering Light Outcoupling in 2D Materials. Nano Letters, 2015, 15, 1356-1361.                                                                           | 9.1  | 138       |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, 2018, 1, .                                                                 | 5.3  | 135       |
| 110 | Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13408-13410. | 7.1  | 134       |
| 111 | Lithium Fluoride Based Electron Contacts for High Efficiency nâ€Type Crystalline Silicon Solar Cells.<br>Advanced Energy Materials, 2016, 6, 1600241.                                                        | 19.5 | 134       |
| 112 | Actively variable-spectrum optoelectronics with black phosphorus. Nature, 2021, 596, 232-237.                                                                                                                | 27.8 | 132       |
| 113 | Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology. Nano Letters, 2004, 4, 123-127.                                                                                               | 9.1  | 131       |
| 114 | Role of TiO <sub>2</sub> Surface Passivation on Improving the Performance of p-InP Photocathodes.<br>Journal of Physical Chemistry C, 2015, 119, 2308-2313.                                                  | 3.1  | 127       |
| 115 | Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction. ACS Energy Letters, 2018, 3, 125-131.                                                   | 17.4 | 127       |
| 116 | Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensors and Actuators B:<br>Chemical, 2010, 145, 232-238.                                                                                | 7.8  | 124       |
| 117 | Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Letters, 2019, 19, 6346-6351.                                                                                                                  | 9.1  | 121       |
| 118 | Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward<br>Reliable Noninvasive Health Monitoring. Advanced Functional Materials, 2019, 29, 1902521.                     | 14.9 | 120       |
| 119 | Electrical properties and devices of large-diameter single-walled carbon nanotubes. Applied Physics<br>Letters, 2002, 80, 1064-1066.                                                                         | 3.3  | 118       |
| 120 | Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Applied<br>Physics Letters, 2007, 91, .                                                                      | 3.3  | 117       |
| 121 | Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nature<br>Materials, 2013, 12, 905-912.                                                                         | 27.5 | 116       |
| 122 | 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO <sub>2</sub> Contact. ACS Photonics, 2014, 1, 1245-1250.                                                                           | 6.6  | 116       |
| 123 | Monolithic 3D CMOS Using Layered Semiconductors. Advanced Materials, 2016, 28, 2547-2554.                                                                                                                    | 21.0 | 107       |
| 124 | General Thermal Texturization Process of MoS <sub>2</sub> for Efficient Electrocatalytic Hydrogen<br>Evolution Reaction. Nano Letters, 2016, 16, 4047-4053.                                                  | 9.1  | 106       |
| 125 | Parallel Array InAs Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency<br>Electronics. ACS Nano, 2010, 4, 5855-5860.                                                                        | 14.6 | 105       |
| 126 | Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer. IEEE<br>Transactions on Electron Devices, 2012, 59, 12-19.                                                           | 3.0  | 105       |

| #   | Article                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | 3D Printed "Earable―Smart Devices for Real-Time Detection of Core Body Temperature. ACS Sensors, 2017, 2, 990-997.                                                                                                                                                                                          | 7.8  | 105       |
| 128 | Band Tailing and Deep Defect States in<br>CH <sub>3</sub> NH <sub>3</sub> Pb(I <sub>1–<i>x</i></sub> Br <sub><i>x</i></sub> ) <sub>3</sub><br>Perovskites As Revealed by Sub-Bandgap Photocurrent. ACS Energy Letters, 2017, 2, 709-715.                                                                    | 17.4 | 102       |
| 129 | Wafer-Scale Growth of WSe <sub>2</sub> Monolayers Toward Phase-Engineered Hybrid<br>WO <sub><i>x</i>/sub&gt;/WSe<sub>2</sub> Films with Sub-ppb NO<sub><i>x</i>/sub&gt; Gas Sensing by a<br/>Low-Temperature Plasma-Assisted Selenization Process. Chemistry of Materials, 2017, 29, 1587-1598.</sub></sub> | 6.7  | 99        |
| 130 | Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes. Nano Letters, 2011, 11, 5008-5012.                                                                                                                                                                                                       | 9.1  | 97        |
| 131 | A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon<br>Solar Cells. Advanced Energy Materials, 2017, 7, 1602606.                                                                                                                                            | 19.5 | 97        |
| 132 | A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors.<br>Scientific Reports, 2015, 5, 17707.                                                                                                                                                                    | 3.3  | 96        |
| 133 | Regular Arrays of 2 nm Metal Nanoparticles for Deterministic Synthesis of Nanomaterials. Journal of the American Chemical Society, 2005, 127, 11942-11943.                                                                                                                                                  | 13.7 | 95        |
| 134 | Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface.<br>Science Advances, 2017, 3, e1701661.                                                                                                                                                               | 10.3 | 95        |
| 135 | MoS2 Heterojunctions by Thickness Modulation. Scientific Reports, 2015, 5, 10990.                                                                                                                                                                                                                           | 3.3  | 93        |
| 136 | Si photocathode with Ag-supported dendritic Cu catalyst for CO <sub>2</sub> reduction. Energy and Environmental Science, 2019, 12, 1068-1077.                                                                                                                                                               | 30.8 | 93        |
| 137 | Highly Uniform and Stable n-Type Carbon Nanotube Transistors by Using Positively Charged Silicon<br>Nitride Thin Films. Nano Letters, 2015, 15, 392-397.                                                                                                                                                    | 9.1  | 92        |
| 138 | Efficient Formation of Iron Nanoparticle Catalysts on Silicon Oxide by Hydroxylamine for Carbon<br>Nanotube Synthesis and Electronics. Nano Letters, 2003, 3, 157-161.                                                                                                                                      | 9.1  | 90        |
| 139 | Chemical Bath Deposition of p-Type Transparent, Highly Conducting<br>(CuS) <sub><i>x</i></sub> :(ZnS) <sub>1–<i>x</i></sub> Nanocomposite Thin Films and Fabrication of Si<br>Heterojunction Solar Cells. Nano Letters, 2016, 16, 1925-1932.                                                                | 9.1  | 89        |
| 140 | Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer<br>Encapsulation. ACS Applied Materials & Interfaces, 2014, 6, 8441-8446.                                                                                                                                       | 8.0  | 87        |
| 141 | Carbon Nanotube Active-Matrix Backplanes for Mechanically Flexible Visible Light and X-ray Imagers.<br>Nano Letters, 2013, 13, 5425-5430.                                                                                                                                                                   | 9.1  | 86        |
| 142 | Artificial Photosynthesis on TiO <sub>2</sub> -Passivated InP Nanopillars. Nano Letters, 2015, 15, 6177-6181.                                                                                                                                                                                               | 9.1  | 86        |
| 143 | Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS <sub>2</sub> by Fluoropolymer Encapsulation and Superacid Treatment. ACS Nano, 2017, 11, 5179-5185.                                                                                                                                       | 14.6 | 86        |
| 144 | Glove-based sensors for multimodal monitoring of natural sweat. Science Advances, 2020, 6, eabb8308.                                                                                                                                                                                                        | 10.3 | 86        |

| #   | Article                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Nanoscale InGaSb Heterostructure Membranes on Si Substrates for High Hole Mobility Transistors.<br>Nano Letters, 2012, 12, 2060-2066.                                     | 9.1  | 85        |
| 146 | Short-Channel Transistors Constructed with Solution-Processed Carbon Nanotubes. ACS Nano, 2013, 7, 798-803.                                                               | 14.6 | 83        |
| 147 | III–V Complementary Metal–Oxide–Semiconductor Electronics on Silicon Substrates. Nano Letters,<br>2012, 12, 3592-3595.                                                    | 9.1  | 80        |
| 148 | Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics. Applied Physics<br>Letters, 2010, 96, .                                                    | 3.3  | 78        |
| 149 | Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon. IEEE<br>Transactions on Electron Devices, 2011, 58, 3933-3939.                  | 3.0  | 78        |
| 150 | Synthetic WSe <sub>2</sub> monolayers with high photoluminescence quantum yield. Science Advances, 2019, 5, eaau4728.                                                     | 10.3 | 78        |
| 151 | BiVO <sub>4</sub> thin film photoanodes grown by chemical vapor deposition. Physical Chemistry Chemical Physics, 2014, 16, 1651-1657.                                     | 2.8  | 77        |
| 152 | Dopantâ€Free Partial Rear Contacts Enabling 23% Silicon Solar Cells. Advanced Energy Materials, 2019, 9,<br>1803367.                                                      | 19.5 | 77        |
| 153 | Trace‣evel, Multiâ€Gas Detection for Food Quality Assessment Based on Decorated Silicon Transistor<br>Arrays. Advanced Materials, 2020, 32, e1908385.                     | 21.0 | 77        |
| 154 | Ultrathin body InAs tunneling field-effect transistors on Si substrates. Applied Physics Letters, 2011,<br>98, .                                                          | 3.3  | 76        |
| 155 | Air stable <i>n</i> -doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Materials, 2014, 2, .                                            | 5.1  | 76        |
| 156 | Quantum of optical absorption in two-dimensional semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11688-11691. | 7.1  | 75        |
| 157 | Optical and electrical properties of two-dimensional palladium diselenide. Applied Physics Letters, 2019, 114, .                                                          | 3.3  | 74        |
| 158 | Self-Aligned, Extremely High Frequency III–V Metal-Oxide-Semiconductor Field-Effect Transistors on<br>Rigid and Flexible Substrates. Nano Letters, 2012, 12, 4140-4145.   | 9.1  | 73        |
| 159 | Nanoscale doping of InAs via sulfur monolayers. Applied Physics Letters, 2009, 95, .                                                                                      | 3.3  | 71        |
| 160 | Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Applied Physics<br>Letters, 2013, 102, .                                               | 3.3  | 71        |
| 161 | Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires.<br>Nano Research, 2008, 1, 32-39.                                   | 10.4 | 70        |
| 162 | Monolayer Resist for Patterned Contact Printing of Aligned Nanowire Arrays. Journal of the<br>American Chemical Society, 2009, 131, 2102-2103.                            | 13.7 | 70        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | A Wearable Nutrition Tracker. Advanced Materials, 2021, 33, e2006444.                                                                                                                                                | 21.0 | 70        |
| 164 | Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays. Nano Letters, 2010, 10, 520-523.                                                                                                               | 9.1  | 68        |
| 165 | Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide<br>Perovskite Nanowire Arrays. Nano Letters, 2019, 19, 2850-2857.                                                       | 9.1  | 67        |
| 166 | Observation of Degenerate One-Dimensional Sub-Bands in Cylindrical InAs Nanowires. Nano Letters, 2012, 12, 1340-1343.                                                                                                | 9.1  | 65        |
| 167 | A direct thin-film path towards low-cost large-area III-V photovoltaics. Scientific Reports, 2013, 3, 2275.                                                                                                          | 3.3  | 65        |
| 168 | Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites. Nano<br>Letters, 2018, 18, 3473-3480.                                                                                        | 9.1  | 65        |
| 169 | Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with<br>Inkjet-Printed Contacts. ACS Nano, 2016, 10, 2819-2826.                                                             | 14.6 | 64        |
| 170 | Neutral Exciton Diffusion in Monolayer MoS <sub>2</sub> . ACS Nano, 2020, 14, 13433-13440.                                                                                                                           | 14.6 | 62        |
| 171 | Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source<br>Reaction. Nano Letters, 2008, 8, 4528-4533.                                                                              | 9.1  | 61        |
| 172 | Prospect of tunneling green transistor for 0.1V CMOS. , 2010, , .                                                                                                                                                    |      | 61        |
| 173 | Fully printed flexible and disposable wireless cyclic voltammetry tag. Scientific Reports, 2015, 5, 8105.                                                                                                            | 3.3  | 61        |
| 174 | Design of Surfactant–Substrate Interactions for Roll-to-Roll Assembly of Carbon Nanotubes for<br>Thin-Film Transistors. Journal of the American Chemical Society, 2014, 136, 11188-11194.                            | 13.7 | 60        |
| 175 | Calcium contacts to nâ€ŧype crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 636-644.                                                                                | 8.1  | 60        |
| 176 | Hybrid Coreâ^'Shell Nanowire Forests as Self-Selective Chemical Connectors. Nano Letters, 2009, 9,<br>2054-2058.                                                                                                     | 9.1  | 59        |
| 177 | Strong optical response and light emission from a monolayer molecular crystal. Nature<br>Communications, 2019, 10, 5589.                                                                                             | 12.8 | 59        |
| 178 | Roll-to-Roll Anodization and Etching of Aluminum Foils for High-Throughput Surface Nanotexturing.<br>Nano Letters, 2011, 11, 3425-3430.                                                                              | 9.1  | 58        |
| 179 | Contact printing of compositionally graded<br>CdS <sub><i>x</i></sub> Se <sub>1â°<i>x</i></sub> Se <sub>11°<i>x</i></sub> snanowire parallel arrays for tunable<br>photodetectors. Nanotechnology, 2012, 23, 045201. | 2.6  | 58        |
| 180 | Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn. Nano Letters, 2010, 10, 509-513.                                                                                                          | 9.1  | 57        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Room Temperature Oxide Deposition Approach to Fully Transparent, Allâ€Oxide Thinâ€Film Transistors.<br>Advanced Materials, 2015, 27, 6090-6095.                                              | 21.0 | 57        |
| 182 | A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na <sup>+</sup> concentration. Lab on A Chip, 2019, 19, 3179-3189.                           | 6.0  | 56        |
| 183 | Physical and Chemical Sensing With Electronic Skin. Proceedings of the IEEE, 2019, 107, 2155-2167.                                                                                           | 21.3 | 56        |
| 184 | Wearable Biosensors for Body Computing. Advanced Functional Materials, 2021, 31, 2008087.                                                                                                    | 14.9 | 56        |
| 185 | Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics. Applied<br>Physics Letters, 2011, 98, .                                                                | 3.3  | 54        |
| 186 | Solutionâ€Processed Transparent Selfâ€Powered pâ€CuSâ€ZnS/nâ€ZnO UV Photodiode. Physica Status Solidi -<br>Rapid Research Letters, 2018, 12, 1700381.                                        | 2.4  | 54        |
| 187 | Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. Scientific Reports, 2015, 5, 16028.                                                                                            | 3.3  | 52        |
| 188 | Enhanced Photocatalytic Reduction of CO <sub>2</sub> to CO through TiO <sub>2</sub> Passivation of InP in Ionic Liquids. Chemistry - A European Journal, 2015, 21, 13502-13507.              | 3.3  | 52        |
| 189 | Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science, 2021, 373, 448-452.                                                                              | 12.6 | 52        |
| 190 | Spin-On Organic Polymer Dopants for Silicon. Journal of Physical Chemistry Letters, 2013, 4, 3741-3746.                                                                                      | 4.6  | 51        |
| 191 | Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS <sub>2</sub> and WS <sub>2</sub> . Journal of Physical Chemistry C, 2020, 124, 12175-12184.                 | 3.1  | 51        |
| 192 | Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.                                                                                                        | 14.6 | 49        |
| 193 | Evaporated Se <i><sub>x</sub></i> Te <sub>1â€</sub> <i><sub>x</sub></i> Thin Films with Tunable<br>Bandgaps for Shortâ€Wave Infrared Photodetectors. Advanced Materials, 2020, 32, e2001329. | 21.0 | 49        |
| 194 | Fully R2Râ€Printed Carbonâ€Nanotubeâ€Based Limitless Length of Flexible Activeâ€Matrix for Electrophoretic<br>Display Application. Advanced Electronic Materials, 2020, 6, 1901431.          | 5.1  | 49        |
| 195 | The 2008 Kavli Prize in Nanoscience: Carbon Nanotubes. ACS Nano, 2008, 2, 1329-1335.                                                                                                         | 14.6 | 48        |
| 196 | Nicotine Monitoring with a Wearable Sweat Band. ACS Sensors, 2020, 5, 1831-1837.                                                                                                             | 7.8  | 48        |
| 197 | Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect.<br>Nano Letters, 2014, 14, 4280-4285.                                                       | 9.1  | 45        |
| 198 | Direct growth of single-crystalline III–V semiconductors on amorphous substrates. Nature<br>Communications, 2016, 7, 10502.                                                                  | 12.8 | 45        |

| #   | Article                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Flexible Carbonâ€Nanofiber Connectors with Anisotropic Adhesion Properties. Small, 2010, 6, 22-26.                                                                            | 10.0 | 44        |
| 200 | Intrinsic Optoelectronic Characteristics of MoS <sub>2</sub> Phototransistors <i>via</i> a Fully<br>Transparent van der Waals Heterostructure. ACS Nano, 2019, 13, 9638-9646. | 14.6 | 43        |
| 201 | Nanoscale Semiconductor "X―on Substrate "Y―– Processes, Devices, and Applications. Advanced<br>Materials, 2011, 23, 3115-3127.                                                | 21.0 | 42        |
| 202 | Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors.<br>Journal of Physical Chemistry C, 2012, 116, 9750-9754.                         | 3.1  | 41        |
| 203 | Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers. ACS Nano, 2018, 12, 2948-2954.                                                     | 14.6 | 41        |
| 204 | Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Applied Physics Letters, 2011, 99, .                            | 3.3  | 40        |
| 205 | Superacid-Treated Silicon Surfaces: Extending the Limit of Carrier Lifetime for Photovoltaic Applications. IEEE Journal of Photovoltaics, 2017, 7, 1574-1583.                 | 2.5  | 40        |
| 206 | Multifunctional, flexible electronic systems based on engineered nanostructured materials.<br>Nanotechnology, 2012, 23, 344001.                                               | 2.6  | 38        |
| 207 | Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots. Journal of Mechanisms and Robotics, 2015, 7, .                                          | 2.2  | 38        |
| 208 | Superacid Passivation of Crystalline Silicon Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 24205-24211.                                                              | 8.0  | 38        |
| 209 | Phosphine Oxide Monolayers on SiO <sub>2</sub> Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4440-4442.                                                      | 13.8 | 37        |
| 210 | Solar cells on curtains. Nature Materials, 2008, 7, 835-836.                                                                                                                  | 27.5 | 37        |
| 211 | Fermi level stabilization and band edge energies in CdxZn1â^'xO alloys. Journal of Applied Physics, 2014, 115, .                                                              | 2.5  | 37        |
| 212 | Temperature and Humidity Stable Alkali/Alkalineâ€Earth Metal Carbonates as Electron Heterocontacts<br>for Silicon Photovoltaics. Advanced Energy Materials, 2018, 8, 1800743. | 19.5 | 35        |
| 213 | Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%. ACS Energy Letters, 2020, 5, 897-902.                              | 17.4 | 35        |
| 214 | High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics.<br>Applied Physics Letters, 2013, 102, .                                    | 3.3  | 33        |
| 215 | Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes. Journal of Physical Chemistry<br>Letters, 2015, 6, 2177-2182.                                            | 4.6  | 33        |
| 216 | Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor–Liquid–Solid Growth Mode.<br>Chemistry of Materials, 2014, 26, 1340-1344.                             | 6.7  | 32        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Highly Reliable Superhydrophobic Protection for Organic Field-Effect Transistors by<br>Fluoroalkylsilane-Coated TiO <sub>2</sub> Nanoparticles. ACS Nano, 2018, 12, 11062-11069.             | 14.6 | 32        |
| 218 | Tellurium Singleâ€Crystal Arrays by Lowâ€Temperature Evaporation and Crystallization. Advanced<br>Materials, 2021, 33, e2100860.                                                             | 21.0 | 32        |
| 219 | Wet and Dry Adhesion Properties of Selfâ€Selective Nanowire Connectors. Advanced Functional<br>Materials, 2009, 19, 3098-3102.                                                               | 14.9 | 31        |
| 220 | Hierarchical polymer micropillar arrays decorated with ZnO nanowires. Nanotechnology, 2010, 21, 295305.                                                                                      | 2.6  | 30        |
| 221 | Comparative study of solution-processed carbon nanotube network transistors. Applied Physics<br>Letters, 2012, 101, 112104.                                                                  | 3.3  | 30        |
| 222 | Thermoresponsive Chemical Connectors Based on Hybrid Nanowire Forests. Angewandte Chemie -<br>International Edition, 2010, 49, 616-619.                                                      | 13.8 | 29        |
| 223 | Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-Assisted<br>Vaporâ^'Liquidâ^'Solid Process. Journal of the American Chemical Society, 2010, 132, 13972-13974. | 13.7 | 29        |
| 224 | Improved photoswitching response times of MoS2 field-effect transistors by stacking <i>p</i> -type copper phthalocyanine layer. Applied Physics Letters, 2016, 109, .                        | 3.3  | 29        |
| 225 | Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates.<br>ACS Nano, 2021, 15, 6573-6581.                                                          | 14.6 | 29        |
| 226 | Hybrid core-multishell nanowire forests for electrical connector applications. Applied Physics<br>Letters, 2009, 94, 263110.                                                                 | 3.3  | 28        |
| 227 | Ultrathin-Body High-Mobility InAsSb-on-Insulator Field-Effect Transistors. IEEE Electron Device<br>Letters, 2012, 33, 504-506.                                                               | 3.9  | 28        |
| 228 | Dip Coating Passivation of Crystalline Silicon by Lewis Acids. ACS Nano, 2019, 13, 3723-3729.                                                                                                | 14.6 | 28        |
| 229 | Rationally Designed, Threeâ€Dimensional Carbon Nanotube Backâ€Contacts for Efficient Solar Devices.<br>Advanced Energy Materials, 2011, 1, 1040-1045.                                        | 19.5 | 27        |
| 230 | Vertically aligned tungsten oxide nanorod film with enhanced performance in photoluminescence humidity sensing. Sensors and Actuators B: Chemical, 2014, 202, 708-713.                       | 7.8  | 27        |
| 231 | Scanning Probe Lithography Patterning of Monolayer Semiconductors and Application in Quantifying Edge Recombination. Advanced Materials, 2019, 31, e1900136.                                 | 21.0 | 27        |
| 232 | Elimination of Response to Relative Humidity Changes in Chemical-Sensitive Field-Effect Transistors.<br>ACS Sensors, 2019, 4, 1857-1863.                                                     | 7.8  | 24        |
| 233 | Generic Nanomaterial Positioning by Carrier and Stationary Phase Design. Nano Letters, 2007, 7, 2764-2768.                                                                                   | 9.1  | 23        |
| 234 | Nanoscale Structural Engineering via Phase Segregation: Auâ^'Ge System. Nano Letters, 2010, 10, 393-397.                                                                                     | 9.1  | 23        |

| #   | Article                                                                                                                                                                                                                                      | IF                                  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| 235 | Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator.<br>Applied Physics Letters, 2011, 98, 012111.                                                                                           | 3.3                                 | 23        |
| 236 | Determining Atomic-Scale Structure and Composition of Organo-Lead Halide Perovskites by Combining<br>High-Resolution X-ray Absorption Spectroscopy and First-Principles Calculations. ACS Energy Letters,<br>2017, 2, 1183-1189.             | 17.4                                | 23        |
| 237 | Spatially Precise Transfer of Patterned Monolayer WS <sub>2</sub> and MoS <sub>2</sub> with<br>Features Larger than 10 <sup>4</sup> μm <sup>2</sup> Directly from Multilayer Sources. ACS Applied<br>Electronic Materials, 2019, 1, 407-416. | 4.3                                 | 23        |
| 238 | A generic electroluminescent device for emission from infrared to ultraviolet wavelengths. Nature Electronics, 2020, 3, 612-621.                                                                                                             | 26.0                                | 23        |
| 239 | Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator.<br>Scientific Reports, 2020, 10, 5377.                                                                                                          | 3.3                                 | 23        |
| 240 | Resettable Microfluidics for Broad-Range and Prolonged Sweat Rate Sensing. ACS Sensors, 2022, 7, 1156-1164.                                                                                                                                  | 7.8                                 | 23        |
| 241 | Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS<br>Nano, 2016, 10, 10615-10617.                                                                                                           | 14.6                                | 22        |
| 242 | Nanoscale Junction Formation by Gas-Phase Monolayer Doping. ACS Applied Materials & Interfaces, 2017, 9, 20648-20655.                                                                                                                        | 8.0                                 | 22        |
| 243 | Anomalously Suppressed Thermal Conduction by Electronâ€Phonon Coupling in Chargeâ€Đensityâ€Wave<br>Tantalum Disulfide. Advanced Science, 2020, 7, 1902071.                                                                                   | 11.2                                | 22        |
| 244 | High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2012, 111, 123112.                                                                    | 2.5                                 | 21        |
| 245 | Enhanced Nearâ€Bandgap Response in InP Nanopillar Solar Cells. Advanced Energy Materials, 2014, 4,<br>1400061.                                                                                                                               | 19.5                                | 21        |
| 246 | Oriented Growth of Gold Nanowires on MoS <sub>2</sub> . Advanced Functional Materials, 2015, 25, 6257-6264.                                                                                                                                  | 14.9                                | 21        |
| 247 | Compliant substrate epitaxy: Au on <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math<br>                                    | :m <b>a.</b> 2 <td>nl:msub&gt;</td> | nl:msub>  |
| 248 | Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices.<br>Scientific Reports, 2016, 6, 33967.                                                                                                        | 3.3                                 | 21        |
| 249 | Extreme In-Plane Thermal Conductivity Anisotropy in Titanium Trisulfide Caused by Heat-Carrying<br>Optical Phonons. Nano Letters, 2020, 20, 5221-5227.                                                                                       | 9.1                                 | 21        |
| 250 | Wearable sweat biosensors. , 2016, , .                                                                                                                                                                                                       |                                     | 20        |
| 251 | Illâ€Vs at scale: a PV manufacturing cost analysis of the thin film vapor–liquid–solid growth mode.<br>Progress in Photovoltaics: Research and Applications, 2016, 24, 871-878.                                                              | 8.1                                 | 20        |
| 252 | Centimeterâ€ <b>5</b> cale and Visible Wavelength Monolayer Lightâ€Emitting Devices. Advanced Functional<br>Materials, 2020, 30, 1907941.                                                                                                    | 14.9                                | 20        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Universal Inverse Scaling of Exciton–Exciton Annihilation Coefficient with Exciton Lifetime. Nano<br>Letters, 2021, 21, 424-429.                                                               | 9.1  | 20        |
| 254 | Light–Matter Interaction Enhancement in Anisotropic 2D Black Phosphorus via Polarization-Tailoring<br>Nano-Optics. ACS Photonics, 2021, 8, 1120-1128.                                          | 6.6  | 20        |
| 255 | Surface Charge Transfer Doping of Ill–V Nanostructures. Journal of Physical Chemistry C, 2013, 117, 17845-17849.                                                                               | 3.1  | 19        |
| 256 | Quantum Well InAs/AlSb/GaSb Vertical Tunnel FET With HSQ Mechanical Support. IEEE<br>Nanotechnology Magazine, 2015, 14, 580-584.                                                               | 2.0  | 19        |
| 257 | Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant. Nanoscale, 2016, 8, 19876-19881. | 5.6  | 19        |
| 258 | Measuring the Edge Recombination Velocity of Monolayer Semiconductors. Nano Letters, 2017, 17, 5356-5360.                                                                                      | 9.1  | 19        |
| 259 | Zirconium oxide surface passivation of crystalline silicon. Applied Physics Letters, 2018, 112, .                                                                                              | 3.3  | 19        |
| 260 | Bright Mid-Wave Infrared Resonant-Cavity Light-Emitting Diodes Based on Black Phosphorus. Nano<br>Letters, 2022, 22, 1294-1301.                                                                | 9.1  | 19        |
| 261 | Morphological and spatial control of InP growth using closed-space sublimation. Journal of Applied Physics, 2012, 112, 123102.                                                                 | 2.5  | 18        |
| 262 | Transistorâ€Based Workâ€Function Measurement of Metal–Organic Frameworks for Ultra‣owâ€Power,<br>Rationally Designed Chemical Sensors. Chemistry - A European Journal, 2019, 25, 13176-13183.  | 3.3  | 18        |
| 263 | Engineering Exciton Recombination Pathways in Bilayer WSe <sub>2</sub> for Bright Luminescence.<br>ACS Nano, 2022, 16, 1339-1345.                                                              | 14.6 | 18        |
| 264 | Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors. Physical Chemistry Chemical Physics, 2013, 15, 2654.                              | 2.8  | 17        |
| 265 | Ultrafast Spontaneous Emission from a Slot-Antenna Coupled WSe <sub>2</sub> Monolayer. ACS<br>Photonics, 2018, 5, 2701-2705.                                                                   | 6.6  | 17        |
| 266 | Development of a compact neutron source based on field ionization processes. Journal of Vacuum<br>Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 02B107.              | 1.2  | 16        |
| 267 | Two-dimensional to three-dimensional tunneling in InAs/AISb/GaSb quantum well heterojunctions.<br>Journal of Applied Physics, 2013, 114, .                                                     | 2.5  | 16        |
| 268 | Electrodeposition of High-Purity Indium Thin Films and Its Application to Indium Phosphide Solar<br>Cells. Journal of the Electrochemical Society, 2014, 161, D794-D800.                       | 2.9  | 16        |
| 269 | Thermal Stability of Hole-Selective Tungsten Oxide: In Situ Transmission Electron Microscopy Study.<br>Scientific Reports, 2018, 8, 12651.                                                     | 3.3  | 16        |
| 270 | Integration of amorphous ferromagnetic oxides with multiferroic materials for room temperature magnetoelectric spintronics. Scientific Reports, 2020, 10, 3583.                                | 3.3  | 16        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Photovoltaic Material Characterization With Steady State and Transient Photoluminescence. IEEE<br>Journal of Photovoltaics, 2015, 5, 282-287.                                                                                | 2.5  | 15        |
| 272 | Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60<br>mV/decade Tunnel Transistors. , 2006, , .                                                                                         |      | 14        |
| 273 | A compact neutron generator using a field ionization source. Review of Scientific Instruments, 2012, 83, 02B312.                                                                                                             | 1.3  | 14        |
| 274 | Analysis of the interface characteristics of CVD-grown monolayer MoS <sub>2</sub> by noise measurements. Nanotechnology, 2017, 28, 145702.                                                                                   | 2.6  | 14        |
| 275 | Thinâ€Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates.<br>Advanced Energy Materials, 2015, 5, 1501337.                                                                             | 19.5 | 13        |
| 276 | Bright electroluminescence in ambient conditions from WSe2 p-n diodes using pulsed injection.<br>Applied Physics Letters, 2019, 115, 011103.                                                                                 | 3.3  | 13        |
| 277 | Survey of dopant-free carrier-selective contacts for silicon solar cells. , 2016, , .                                                                                                                                        |      | 12        |
| 278 | Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films. Chemistry of Materials, 2016, 28, 4602-4607.                                                                                               | 6.7  | 12        |
| 279 | Thermal stability for Te-based devices. Applied Physics Letters, 2020, 117, .                                                                                                                                                | 3.3  | 12        |
| 280 | Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features<br>Directly From Multilayer Sources Into Van Der Waals Heterostructures. Journal of Micro and<br>Nano-Manufacturing, 2019, 7, . | 0.7  | 12        |
| 281 | Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma.<br>Thin Solid Films, 2013, 534, 488-491.                                                                                | 1.8  | 11        |
| 282 | Performance Limits of an Alternating Current Electroluminescent Device. Advanced Materials, 2021, 33, e2005635.                                                                                                              | 21.0 | 11        |
| 283 | Enhanced Neutral Exciton Diffusion in Monolayer WS <sub>2</sub> by Exciton–Exciton Annihilation.<br>ACS Nano, 2022, 16, 8005-8011.                                                                                           | 14.6 | 11        |
| 284 | Efficiency Roll-Off Free Electroluminescence from Monolayer WSe <sub>2</sub> . Nano Letters, 2022, 22, 5316-5321.                                                                                                            | 9.1  | 11        |
| 285 | InAs FinFETs Performance Enhancement by Superacid Surface Treatment. IEEE Transactions on Electron Devices, 2019, 66, 1856-1861.                                                                                             | 3.0  | 10        |
| 286 | Molecular Materials with Short Radiative Lifetime for High-Speed Light-Emitting Devices. Matter, 2020, 3, 1832-1844.                                                                                                         | 10.0 | 10        |
| 287 | Copper Tetracyanoquinodimethane (CuTCNQ): A Metal–Organic Semiconductor for Room-Temperature<br>Visible to Long-Wave Infrared Photodetection. ACS Applied Materials & Interfaces, 2021, 13,<br>38544-38552.                  | 8.0  | 10        |
| 288 | A Resonantly Driven, Electroluminescent Metal Oxide Semiconductor Capacitor with High Power<br>Efficiency. ACS Nano, 2021, 15, 15210-15217.                                                                                  | 14.6 | 10        |

4

| #   | Article                                                                                                                                                                                   | IF                  | CITATIONS     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| 289 | 2D layered materials: From materials properties to device applications. , 2015, , .                                                                                                       |                     | 9             |
| 290 | PCBM-Grafted MWNT for Enhanced Electron Transport in Polymer Solar Cells. Journal of the Electrochemical Society, 2011, 158, A237.                                                        | 2.9                 | 8             |
| 291 | Carbon Nanotubes: Printed Carbon Nanotube Electronics and Sensor Systems (Adv. Mater. 22/2016).<br>Advanced Materials, 2016, 28, 4396-4396.                                               | 21.0                | 8             |
| 292 | Microchannel contacting of crystalline silicon solar cells. Scientific Reports, 2017, 7, 9085.                                                                                            | 3.3                 | 8             |
| 293 | High-gain monolithic 3D CMOS inverter using layered semiconductors. Applied Physics Letters, 2017, 111, .                                                                                 | 3.3                 | 8             |
| 294 | Shape-controlled single-crystal growth of InP at low temperatures down to 220 ŰC. Proceedings of the United States of America, 2020, 117, 902-906.                                        | 7.1                 | 8             |
| 295 | Wearable Biosensors for Body Computing (Adv. Funct. Mater. 39/2021). Advanced Functional Materials, 2021, 31, 2170290.                                                                    | 14.9                | 8             |
| 296 | Flexible Electronics: Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis (Adv.) Tj ETQq0 0 0 rgI                                                                    | 3T /Overloo<br>21.0 | ck 10 Tf 50 4 |
| 297 | Orientated Growth of Ultrathin Tellurium by van der Waals Epitaxy. Advanced Materials Interfaces, 2022, 9, .                                                                              | 3.7                 | 7             |
| 298 | A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.                                                                                                                                   | 14.6                | 6             |
| 299 | Wearable Devices: Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch<br>Monitoring (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .                       | 21.0                | 6             |
| 300 | Gate Quantum Capacitance Effects in Nanoscale Transistors. Nano Letters, 2019, 19, 7130-7137.                                                                                             | 9.1                 | 6             |
| 301 | In Situ Transmission Electron Microscopy Study of Molybdenum Oxide Contacts for Silicon Solar<br>Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800998. | 1.8                 | 6             |
| 302 | Graphitic interfacial layer to carbon nanotube for low electrical contact resistance. , 2010, , .                                                                                         |                     | 5             |

| 303 | Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.                                                                                                       | 14.6 | 5 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 304 | Mimicking the Human Brain and More: New Grand Challenge Initiatives. ACS Nano, 2015, 9, 10533-10536.                                                      | 14.6 | 5 |
| 305 | Improved Hydrogen Sensitivity and Selectivity in PdO with Metal-Organic Framework Membrane.<br>Journal of the Electrochemical Society, 2020, 167, 147503. | 2.9  | 5 |

306 Monolayer doping and diameter-dependent electron mobility assessment of nanowires. , 2009, , .

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Resistive switching of carbon-based RRAM with CNT electrodes for ultra-dense memory. , 2010, , .                                                                                             |      | 4         |
| 308 | Photoluminescence imaging characterization of thin-film InP. , 2015, , .                                                                                                                     |      | 4         |
| 309 | Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.                                                                                                                 | 14.6 | 4         |
| 310 | Power surfing on waves. Nature, 2011, 472, 304-305.                                                                                                                                          | 27.8 | 3         |
| 311 | We Take It Personally. ACS Nano, 2012, 6, 10417-10419.                                                                                                                                       | 14.6 | 3         |
| 312 | Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.                                                                                                                                        | 14.6 | 3         |
| 313 | Enhanced Spontaneous Emission from an Optical Antenna Coupled WSe2 Monolayer. , 2015, , .                                                                                                    |      | 3         |
| 314 | Preface to Special Topic: Selected Papers from the International Conference on Flexible and Printed<br>Electronics, Jeju Island, Korea, 2009. Journal of Applied Physics, 2010, 108, 102701. | 2.5  | 2         |
| 315 | Measuring Academic Impact. ACS Nano, 2012, 6, 6529-6529.                                                                                                                                     | 14.6 | 2         |
| 316 | Series resistance and mobility in mechanically-exfoliated layered transition metal dichalcogenide MOSFETs. , 2014, , .                                                                       |      | 2         |
| 317 | Two-Chip Wireless H2S Gas Sensor System Requiring Zero Additional Electronic Components. , 2019, , .                                                                                         |      | 2         |
| 318 | Laserâ€Assisted Thermomechanical Thinning of MoTe <sub>2</sub> in Nanoscale Lateral Resolution.<br>Advanced Materials Interfaces, 2022, 9, .                                                 | 3.7  | 2         |
| 319 | Self-aligned 40-nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade. , 2005, , .                                                               |      | 1         |
| 320 | Carbon Nanotube Field-Effect Transistors. Integrated Circuits and Systems, 2009, , 63-86.                                                                                                    | 0.2  | 1         |
| 321 | Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.                                                                                                                                     | 14.6 | 1         |
| 322 | Catalyst-dependent morphological evolution by interfacial stress in crystalline–amorphous<br>core–shell germanium nanowires. RSC Advances, 2015, 5, 28454-28459.                             | 3.6  | 1         |
| 323 | A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.                                                                                                                          | 14.6 | 1         |
| 324 | 2D Semiconductor Optoelectropics 2017                                                                                                                                                        |      | 1         |

| #   | Article                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | 23% efficient n-type crystalline silicon solar cells with passivated partial rear contacts. , 2018, , .                                                                     |      | 1         |
| 326 | Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.                                                                                                     | 14.6 | 1         |
| 327 | Ordered polymer-based spin-on dopants. , 2019, , .                                                                                                                          |      | 1         |
| 328 | Theory of liquid-mediated strain release in two-dimensional materials. Physical Review Materials, 2022,<br>6, .                                                             | 2.4  | 1         |
| 329 | Structural heterogeneity in non-crystalline Te <sub><i>x</i></sub> Se1â^x thin films. Applied Physics<br>Letters, 2022, 121, 012101.                                        | 3.3  | 1         |
| 330 | Nanowire-based 2-D and 3-D XoY electronics. , 2010, , .                                                                                                                     |      | 0         |
| 331 | ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.                                                                                                 | 14.6 | Ο         |
| 332 | Strongly enhanced minority lifetimes in single silicon nanowires by surface passivation. , 2011, , .                                                                        |      | 0         |
| 333 | Quantum membranes: A new materials platform for future electronics. , 2013, , .                                                                                             |      | 0         |
| 334 | Carbon nanotube macroelectronics: toward system-on-plastic. Proceedings of SPIE, 2013, , .                                                                                  | 0.8  | 0         |
| 335 | Solar fuels production by artificial photosynthesis. , 2013, , .                                                                                                            |      | Ο         |
| 336 | Frontispiece: Enhanced Photocatalytic Reduction of CO2to CO through TiO2Passivation of InP in Ionic<br>Liquids. Chemistry - A European Journal, 2015, 21, n/a-n/a.          | 3.3  | 0         |
| 337 | Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium<br>Lead Halide Perovskite Films. Journal of Visualized Experiments, 2017, , . | 0.3  | 0         |
| 338 | Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.                                                                                                      | 14.6 | 0         |
| 339 | Measuring the edge recombination velocity of monolayer semiconductors. , 2017, , .                                                                                          |      | 0         |
| 340 | Investigation of InP defect characteristics grown using novel TF-VLS technique. , 2017, , .                                                                                 |      | 0         |
| 341 | Metal Nanoparticle Hole Contacts for Silicon Solar Cells. , 2017, , .                                                                                                       |      | 0         |
| 342 | Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.                                                                                                                 | 14.6 | 0         |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Transmission Electron Microscopy Studies of Transition Metal Oxides Employed as Carrier Selective<br>Contacts in Silicon Solar Cells. , 2018, , .                                                                 |      | 0         |
| 344 | Scalable Ultra Low-Power Chemical Sensing with Metal-Organic Frameworks. , 2019, , .                                                                                                                              |      | 0         |
| 345 | In Situ Transmission Electron Microscopy: A Powerful Tool for the Characterization of Carrier-Selective Contacts. , 2019, , .                                                                                     |      | 0         |
| 346 | Monolayer Semiconductors: Scanning Probe Lithography Patterning of Monolayer Semiconductors<br>and Application in Quantifying Edge Recombination (Adv. Mater. 48/2019). Advanced Materials, 2019, 31,<br>1970340. | 21.0 | 0         |
| 347 | Polarization-Converting Plasmonic Nanoantennas for Light Absorption Enhancement in Anisotropic<br>2D Black Phosphorus. , 2021, , .                                                                                |      | 0         |
| 348 | Longwave Infrared Photoresponse in Copper 7,7,8,8-tetracyano-2,3,5,6-tetraflouroquinodimethane<br>(CuTCNQF4). , 2021, , .                                                                                         |      | 0         |
| 349 | Bright Electroluminescence from Back-Gated WSe2 P-N Junctions Using Pulsed Injection. , 2018, , .                                                                                                                 |      | 0         |
| 350 | Mid-Infrared Computational Spectroscopy with an Electrically-Tunable Graphene Metasurface. , 2019, , $\cdot$                                                                                                      |      | 0         |
| 351 | Long-Wave Infrared Photodetectors Based on Platinum Diselenide. , 2020, , .                                                                                                                                       |      | 0         |
| 352 | Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ)<br>Crystals. , 2020, , .                                                                                           |      | 0         |
| 353 | Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.                                                                                                                                                                   | 14.6 | 0         |