Bruce Jacob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10598286/publications.pdf

Version: 2024-02-01

1181555 1305906 1,437 25 8 14 citations h-index g-index papers 25 25 25 865 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Monolithically Integrating Non-Volatile Main Memory over the Last-Level Cache. Transactions on Architecture and Code Optimization, 2021, 18, 1-26.	1.6	3
2	DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Computer Architecture Letters, 2020, 19, 106-109.	1.0	87
3	Tileable Monolithic ReRAM Memory Design. , 2020, , .		1
4	Analyzing the Monolithic Integration of a ReRAM-Based Main Memory Into a CPU's Die. IEEE Micro, 2019, 39, 64-72.	1.8	3
5	PROFET. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2019, 3, 1-33.	1.4	2
6	Rethinking cycle accurate DRAM simulation. , 2019, , .		4
7	Statistical DRAM modeling. , 2019, , .		5
8	A performance & amp; power comparison of modern high-speed DRAM architectures. , 2018, , .		22
9	Main memory latency simulation. , 2018, , .		5
10	Flexible auto-refresh. Computer Architecture News, 2016, 43, 235-246.	2.5	13
10	Flexible auto-refresh. Computer Architecture News, 2016, 43, 235-246. The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128.	2.5	4
	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE		
11	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128. The Case for VLIW-CMP as a Building Block for Exascale. IEEE Computer Architecture Letters, 2016, 15,	1.0	4
11 12	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128. The Case for VLIW-CMP as a Building Block for Exascale. IEEE Computer Architecture Letters, 2016, 15, 54-57.	1.0	2
11 12 13	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128. The Case for VLIW-CMP as a Building Block for Exascale. IEEE Computer Architecture Letters, 2016, 15, 54-57. Bringing Modern Hierarchical Memory Systems Into Focus., 2015,,.	1.0	2
11 12 13 14	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128. The Case for VLIW-CMP as a Building Block for Exascale. IEEE Computer Architecture Letters, 2016, 15, 54-57. Bringing Modern Hierarchical Memory Systems Into Focus., 2015,,	1.0	4 2 1 72
11 12 13 14	The 2 PetaFLOP, 3 Petabyte, 9 TB/s, 90ÂkW Cabinet: A System Architecture for Exascale and Big Data. IEEE Computer Architecture Letters, 2016, 15, 125-128. The Case for VLIW-CMP as a Building Block for Exascale. IEEE Computer Architecture Letters, 2016, 15, 54-57. Bringing Modern Hierarchical Memory Systems Into Focus., 2015,,. Flexible auto-refresh., 2015,,. Coordinated refresh: Energy efficient techniques for DRAM refresh scheduling., 2013,,.	1.0	4 2 1 72

BRUCE JACOB

#	Article	IF	CITATION
19	Fine-Grained Activation for Power Reduction in DRAM. IEEE Micro, 2010, 30, 34-47.	1.8	46
20	The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It. Synthesis Lectures on Computer Architecture, 2009, 4, 1-77.	1.3	23
21	The performance of PC solid-state disks (SSDs) as a function of bandwidth, concurrency, device architecture, and system organization. Computer Architecture News, 2009, 37, 279-289.	2.5	39
22	Fully-Buffered DIMM Memory Architectures: Understanding Mechanisms, Overheads and Scaling. , 2007, , .		66
23	Electromagnetic Interference and Digital Circuits: An Initial Study of Clock Networks. Electromagnetics, 2006, 26, 73-86.	0.3	9
24	DRAMsim. Computer Architecture News, 2005, 33, 100-107.	2.5	257
25	Concurrency, latency, or system overhead. , 2001, , .		52