
James N Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10595720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COARSE WOODY DEBRIS AS A FUNCTION OF AGE, STAND STRUCTURE, AND DISTURBANCE IN BOREAL NEWFOUNDLAND. , 1997, 7, 702-712.		241
2	A Practical Approach to Density Management. Forestry Chronicle, 1985, 61, 23-27.	0.6	211
3	Emulating natural disturbance regimes as a basis for forest management: A North American view. Forest Ecology and Management, 2009, 257, 1868-1873.	3.2	151
4	Relation between size and density in developing stands: A description and possible mechanisms. Forest Ecology and Management, 1984, 7, 191-206.	3.2	142
5	Linkages between silviculture and ecology: an analysis of density management diagrams. Forest Ecology and Management, 1996, 86, 205-220.	3.2	131
6	Resistance and Resilience: A Conceptual Framework for Silviculture. Forest Science, 2014, 60, 1205-1212.	1.0	118
7	Age-related decline in forest growth: an emergent property. Forest Ecology and Management, 2001, 144, 175-181.	3.2	115
8	Accumulation of Organic Matter in a Series of Douglas-fir Stands. Canadian Journal of Forest Research, 1975, 5, 681-690.	1.7	112
9	Assessment of Growing Stock in Uneven-Aged Stands. Western Journal of Applied Forestry, 1990, 5, 93-96.	0.5	111
10	Linkages between silviculture and ecology: examination of several important conceptual models. Forest Ecology and Management, 2004, 200, 249-261.	3.2	104
11	Volume increment in Pinus contorta var. latifolia: the influence of stand development and crown dynamics. Forest Ecology and Management, 1992, 53, 53-64.	3.2	101
12	Leaf area - sapwood area relations of lodgepole pine as influenced by stand density and site index. Canadian Journal of Forest Research, 1988, 18, 247-250.	1.7	99
13	Determinants of Stemwood Production in Pinus contorta var. Latifolia Forests: The Influence of Site Quality and Stand Structure. Journal of Applied Ecology, 1990, 27, 847.	4.0	70
14	The role of Douglas-fir stem sapwood and heartwood in the mechanical and physiological support of crowns and development of stem form. Canadian Journal of Forest Research, 1981, 11, 459-464.	1.7	69
15	A Density Management Diagram for Even-aged Ponderosa Pine Stands. Western Journal of Applied Forestry, 2005, 20, 205-215.	0.5	68
16	A Lodgepole Pine Density Management Diagram. Western Journal of Applied Forestry, 1986, 1, 6-11.	0.5	65
17	The Influence of Canopy Architecture on Stemwood Production and Growth Efficiency of Pinus contorta Var. latifolia. Journal of Applied Ecology, 1989, 26, 681.	4.0	65
18	Disturbance, structure, and composition: Spruce beetle and Engelmann spruce forests on the Markagunt Plateau, Utah. Forest Ecology and Management, 2007, 244, 16-23.	3.2	60

James N Long

#	Article	IF	CITATIONS
19	Wildfire and spruce beetle outbreak: Simulation of interacting disturbances in the central Rocky Mountains. Ecoscience, 2009, 16, 28-38.	1.4	54
20	Temporal and spatial dynamics of boreal forest structure in western Newfoundland: silvicultural implications for marten habitat management. Forest Ecology and Management, 1996, 87, 13-25.	3.2	52
21	Changing perspectives on regeneration ecology and genetic diversity in western quaking aspen: implications for silviculture. Canadian Journal of Forest Research, 2012, 42, 2011-2021.	1.7	50
22	Canopy stratification and leaf area efficiency: a conceptualization. Forest Ecology and Management, 1993, 60, 143-156.	3.2	46
23	Regeneration response and seedling bank dynamics on a <i>Dendroctonus rufipennis</i> -killed <i>Picea engelmannii</i> landscape. Journal of Vegetation Science, 2010, 21, 377-387.	2.2	46
24	A Density Management Diagram for Longleaf Pine Stands with Application to Red-Cockaded Woodpecker Habitat. Southern Journal of Applied Forestry, 2007, 31, 28-38.	0.3	45
25	Aboveground Biomass of Understorey and Overstorey in an Age Sequence of Four Douglas-Fir Stands. Journal of Applied Ecology, 1975, 12, 179.	4.0	41
26	Factors Influencing the Spatial and Temporal Dynamics of Engelmann Spruce Mortality during a Spruce Beetle Outbreak on the Markagunt Plateau, Utah. Forest Science, 2012, 58, 1-14.	1.0	41
27	Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA. Forest Ecology and Management, 2013, 308, 198-206.	3.2	41
28	Elk Hiding and Thermal Cover Guidelines in the Context of Lodgepole Pine Stand Density. Western Journal of Applied Forestry, 1987, 2, 6-10.	0.5	39
29	A density management diagram for teak plantations of Kerala in peninsular india. Forest Ecology and Management, 1995, 74, 125-131.	3.2	39
30	Drought-driven disturbance history characterizes a southern Rocky Mountain subalpine forest. Canadian Journal of Forest Research, 2012, 42, 1649-1660.	1.7	38
31	Cytotype differences in radial increment provide novel insight into aspen reproductive ecology and stand dynamics. Canadian Journal of Forest Research, 2015, 45, 1-8.	1.7	36
32	Production efficiency of Abieslasiocarpa: influence of vertical distribution of leaf area. Canadian Journal of Forest Research, 1992, 22, 1230-1234.	1.7	34
33	Combining dendrochronological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southern Utah, USA. Remote Sensing of Environment, 2011, 115, 2342-2349.	11.0	33
34	Forest production and the organization of foliage within crowns and canopies. Forest Ecology and Management, 1992, 49, 233-245.	3.2	32
35	Traumatic resin ducts as indicators of bark beetle outbreaks. Canadian Journal of Forest Research, 2017, 47, 1168-1174.	1.7	30
36	Estimating leaf area of Abieslasiocarpa across ranges of stand density and site quality. Canadian Journal of Forest Research, 1989, 19, 930-932.	1.7	29

James N Long

#	Article	IF	CITATIONS
37	A density management diagram for Scots pine (Pinus sylvestris L.): A tool for assessing the forest's protective effect. Forest Ecology and Management, 2008, 255, 2542-2554.	3.2	27
38	Technical Notes: A Technique for the Control of Stocking in Two-Storied Stands. Western Journal of Applied Forestry, 1996, 11, 59-61.	0.5	24
39	Response of leaf area index to density for two contrasting tree species. Canadian Journal of Forest Research, 1991, 21, 1760-1764.	1.7	23
40	A comprehensive framework of forest stand property–density relationships: perspectives for plant population ecology and forest management. Annals of Forest Science, 2014, 71, 325-335.	2.0	23
41	Sapwood area ofPinus contorta stands as a function of mean size and density. Oecologia, 1986, 68, 410-412.	2.0	20
42	A Modified Density Management Diagram for Coastal Douglas-Fir. Western Journal of Applied Forestry, 1988, 3, 88-89.	0.5	20
43	Crown structure of a codominant Douglas-fir. Canadian Journal of Forest Research, 1983, 13, 264-269.	1.7	19
44	Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests. Forests, 2012, 3, 300-316.	2.1	19
45	Carbon Dynamics in Central US Rockies Lodgepole Pine Type after Mountain Pine Beetle Outbreaks. Forest Science, 2015, 61, 665-679.	1.0	19
46	Influence of leaf area and canopy structure on size-density relations in even-aged lodgepole pine stands. Forest Ecology and Management, 1992, 49, 109-117.	3.2	17
47	A Density Management Diagram for Even-Aged Sierra Nevada Mixed-Conifer Stands. Western Journal of Applied Forestry, 2012, 27, 187-195.	0.5	16
48	Stable or seral? Fire-driven alternative states in aspen forests of western North America. Biology Letters, 2019, 15, 20190011.	2.3	15
49	Diversity, complexity and interactions: an overview of Rocky Mountain forest ecosystems. Tree Physiology, 2003, 23, 1091-1099.	3.1	14
50	If Long-Term Resistance to a Spruce Beetle Epidemic is Futile, Can Silvicultural Treatments Increase Resilience in Spruce-Fir Forests in the Central Rocky Mountains?. Forests, 2015, 6, 1157-1178.	2.1	14
51	Technical Commentary: Growth and Yield Implications of a "New Forestry" Silvicultural System. Western Journal of Applied Forestry, 1992, 7, 6-9.	0.5	13
52	Stand Density Management Diagram for Mixed Balsam Fir-Black Spruce Stands. Northern Journal of Applied Forestry, 1998, 15, 17-22.	0.5	13
53	Forest Ecology and Biogeography of the Uinta Mountains, U.S.A. Arctic, Antarctic, and Alpine Research, 2007, 39, 614-628.	1.1	13
54	Above-ground production in cleared and thinned stands of semiarid tropical woodland, Brazil. Forest Ecology and Management, 1988, 23, 201-214.	3.2	12

JAMES N LONG

#	Article	IF	CITATIONS
55	Building Resistance and Resilience: Regeneration Should Not be Left to Chance. Forests, 2018, 9, 270.	2.1	11
56	Limber Pine (Pinus flexilis James), a Flexible Generalist of Forest Communities in the Intermountain West. PLoS ONE, 2016, 11, e0160324.	2.5	11
57	Landscape-Scale Drivers of Resistance and Resilience to Bark Beetles: A Conceptual Susceptibility Model. Forests, 2021, 12, 798.	2.1	9
58	Developing and Comparing Silvicultural Alternatives: Goals, Objectives, and Evaluation Criteria. Western Journal of Applied Forestry, 2010, 25, 96-98.	0.5	8
59	Fidelity and diagnostic species concepts in vegetation classification in the Rocky Mountains, northern Utah, USA. Botany, 2012, 90, 678-693.	1.0	8
60	Epidemic spruce beetle outbreak changes drivers of Engelmann spruce regeneration. Ecosphere, 2019, 10, e02912.	2.2	8
61	Vegetation geo-climatic zonation in the rocky mountains, Northern Utah, USA. Journal of Mountain Science, 2014, 11, 656-673.	2.0	6
62	Summer-fall home-range fidelity of female elk in northwestern Colorado: Implications for aspen management. Forest Ecology and Management, 2017, 389, 220-227.	3.2	6
63	Effects of Storage, Planting Date, and Shelter on Engelmann Spruce Containerized Seedlings in the Central Rockies. Western Journal of Applied Forestry, 1991, 6, 36-38.	0.5	5
64	Aboveground biomass accumulation in coppicing woodland, northeast Brazil. Forest Ecology and Management, 1992, 55, 201-208.	3.2	5
65	Does the Practice of Silviculture Build Resilience to the Spruce Beetle? A Case Study of Treated and Untreated Spruce-Fir Stands in Northern Utah. Journal of Forestry, 2017, 115, 559-567.	1.0	5
66	Climatic Drivers of Ponderosa Pine Growth in Central Idaho. Tree-Ring Research, 2018, 74, 172-184.	0.6	5
67	Discriminant analysis reveals limited association between forest habitat types and the environment in western United States land classification. Applied Vegetation Science, 2015, 18, 158-168.	1.9	4
68	Herbivory and advance reproduction influence quaking aspen regeneration response to management in southern Utah, USA. Canadian Journal of Forest Research, 2016, 46, 674-682.	1.7	4
69	Regional differences in aspen (Populus tremuloides Michx.) seedling response to an established nursery protocol. New Forests, 2020, 51, 367-378.	1.7	4
70	Exploring seedling-based aspen (Populus tremuloides) restoration near range limits in the Intermountain West, USA. Forest Ecology and Management, 2020, 476, 118470.	3.2	4
71	Coarse Woody Debris as a Function of Age, Stand Structure, and Disturbance in Boreal Newfoundland. , 1997, 7, 702.		4
72	Intra- and interspecific tests of some traditional indicators of relative tolerance. Forest Ecology and Management, 1989, 28, 177-189.	3.2	0