Lucy Cherbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10594412/publications.pdf

Version: 2024-02-01

218677 395702 7,361 35 26 33 h-index citations g-index papers 36 36 36 8295 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Compendium of Drosophila Cell Line Resources and Plasmid Vectors at the Drosophila Genome Resource Center., 2018,, 207-226.		O
2	Diverse Hormone Response Networks in 41 Independent <i>Drosophila</i> Cell Lines. G3: Genes, Genomes, Genetics, 2016, 6, 683-694.	1.8	42
3	Tools for Targeted Genome Engineering of Established <i>Drosophila</i> Cell Lines. Genetics, 2015, 201, 1307-1318.	2.9	16
4	DNA copy number evolution in Drosophila cell lines. Genome Biology, 2014, 15, R70.	8.8	96
5	Diversity of miRNAs, siRNAs, and piRNAs across 25 <i>Drosophila</i> cell lines. Genome Research, 2014, 24, 1236-1250.	5.5	66
6	Diversity and dynamics of the Drosophila transcriptome. Nature, 2014, 512, 393-399.	27.8	647
7	Cell lines. Methods, 2014, 68, 74-81.	3.8	42
8	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	27.8	289
9	Cryptocephal, the Drosophila melanogaster ATF4, Is a Specific Coactivator for Ecdysone Receptor Isoform B2. PLoS Genetics, 2012, 8, e1002883.	3.5	23
10	The developmental transcriptome of Drosophila melanogaster. Nature, 2011, 471, 473-479.	27.8	1,379
11	The transcriptional diversity of 25 <i>Drosophila</i> cell lines. Genome Research, 2011, 21, 301-314.	5.5	235
12	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	12.6	1,124
13	Drosophila Cell Lines as Model Systems and as an Experimental Tool. Methods in Molecular Biology, 2008, 420, 391-424.	0.9	39
14	Transformation of Drosophila Cell Lines. Methods in Molecular Biology, 2007, 388, 317-340.	0.9	11
15	<i>Drosophila</i> Cell Culture and Transformation: Figure 1 Cold Spring Harbor Protocols, 2007, 2007, pdb.top6.	0.3	11
16	Use of time-lapse imaging and dominant negative receptors to dissect the steroid receptor control of neuronal remodeling in Drosophila. Development (Cambridge), 2006, 133, 275-285.	2.5	73
17	The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes and Development, 2005, 19, 2540-2545.	5.9	131
18	Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature, 2003, 426, 78-83.	27.8	157

#	Article	IF	CITATIONS
19	EcR isoforms inDrosophila: testing tissue-specific requirements by targeted blockade and rescue. Development (Cambridge), 2003, 130, 271-284.	2.5	298
20	Transcription Activation by the Ecdysone Receptor (EcR/USP): Identification of Activation Functions. Molecular Endocrinology, 2003, 17, 716-731.	3.7	171
21	"Parahomologous―Gene Targeting in Drosophila Cells: An Efficient, Homology-Dependent Pathway of Illegitimate Recombination Near a Target Site. Genetics, 1997, 145, 349-358.	2.9	41
22	Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochemistry and Molecular Biology, 1996, 26, 217-221.	2.7	113
23	Molecular Aspects of Ecdysteroid Hormone Action. , 1996, , 175-221.		39
24	Genetic transformation of Drosophila cells in culture by P element-mediated transposition. Somatic Cell and Molecular Genetics, 1996, 22, 159-165.	0.7	26
25	The moulting hormone ecdysone is able to recognize target elements composed of direct repeats. Molecular and Cellular Endocrinology, 1995, 113, 1-9.	3.2	50
26	Chapter 9 Transformation Techniques for Drosophila Cell Lines. Methods in Cell Biology, 1994, 44, 161-179.	1.1	71
27	Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature, 1993, 366, 476-479.	27.8	888
28	The arthropod initiator: The capsite consensus plays an important role in transcription. Insect Biochemistry and Molecular Biology, 1993, 23, 81-90.	2.7	217
29	Specific EGF repeats of Notch mediate interactions with Delta and serrate: Implications for notch as a multifunctional receptor. Cell, 1991, 67, 687-699.	28.9	750
30	Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. Genesis, 1989, 10, 177-188.	2.1	64
31	lonic coupling and mitotic synchrony of siblings in a Drosophila cell line. Experimental Cell Research, 1989, 184, 509-517.	2.6	14
32	Diverse expression of overlapping genes: The Drosophila Eip28/29 gene and its upstream neighbors. Developmental Biology, 1989, 131, 515-523.	2.0	23
33	The Effects of Ecdysteroid Hormones on Drosophila Melanogaster Cell Lines. Advances in Cell Culture, 1981, 1, 91-124.	0.9	40
34	The morphological response of Kc-H cells to ecdysteroids: Hormonal specificity. Wilhelm Roux's Archives of Developmental Biology, 1980, 189, 1-15.	1.4	113
35	DISTRIBUTION AND METABOLISM OF α-ECDYSONE IN PUPAE OF THE SILKWORMANTHERAEA POLYPHEMUS. Biological Bulletin, 1970, 138, 115-128.	1.8	62