Amy M Mckenna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1059433/publications.pdf

Version: 2024-02-01

94 papers 5,376 citations

39 h-index 70 g-index

95 all docs 95
docs citations

95 times ranked 4506 citing authors

#	Article	IF	CITATIONS
1	Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8, 1089.	12.8	371
2	Parts-Per-Billion Fourier Transform Ion Cyclotron Resonance Mass Measurement Accuracy with a "Walking―Calibration Equation. Analytical Chemistry, 2011, 83, 1732-1736.	6.5	190
3	Petroleum Analysis. Analytical Chemistry, 2011, 83, 4665-4687.	6.5	186
4	Identification of Vanadyl Porphyrins in a Heavy Crude Oil and Raw Asphaltene by Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. Energy & Energ	5.1	185
5	Petroleomics: advanced molecular probe for petroleum heavy ends. Journal of Mass Spectrometry, 2011, 46, 337-343.	1.6	172
6	Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. Energy &	5.1	166
7	Petroleum Crude Oil Characterization by IMS-MS and FTICR MS. Analytical Chemistry, 2009, 81, 9941-9947.	6.5	164
8	Heavy Petroleum Composition. 3. Asphaltene Aggregation. Energy & Energy & 2013, 27, 1246-1256.	5.1	162
9	Heavy Petroleum Composition. 4. Asphaltene Compositional Space. Energy & En	5.1	147
10	Expansion of the Analytical Window for Oil Spill Characterization by Ultrahigh Resolution Mass Spectrometry: Beyond Gas Chromatography. Environmental Science & Echnology, 2013, 47, 7530-7539.	10.0	144
11	Heavy Petroleum Composition. 1. Exhaustive Compositional Analysis of Athabasca Bitumen HVGO Distillates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Definitive Test of the Boduszynski Model. Energy & Definitive Test of the Boduszynski Model. Energy & Definitive Test of the Boduszynski Model.	5.1	138
12	Targeted Petroleomics: Analytical Investigation of Macondo Well Oil Oxidation Products from Pensacola Beach. Energy & En	5.1	130
13	A molecular model for Illinois No. 6 Argonne Premium coal: Moving toward capturing the continuum structure. Fuel, 2012, 95, 35-49.	6.4	112
14	Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FT-ICR Mass Spectrometry. Energy & Samp; Fuels, 2010, 24, 2939-2946.	5.1	106
15	Compositional Boundaries for Fossil Hydrocarbons. Energy & Energy	5.1	103
16	Electrically Compensated Fourier Transform Ion Cyclotron Resonance Cell for Complex Mixture Mass Analysis. Analytical Chemistry, 2011, 83, 6907-6910.	6.5	103
17	Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight. Organic Geochemistry, 2017, 103, 113-124.	1.8	102
18	On the Size Distribution of Self-Associated Asphaltenes. Energy & Samp; Fuels, 2013, 27, 5083-5106.	5.1	98

#	Article	IF	CITATIONS
19	Characterization of Pine Pellet and Peanut Hull Pyrolysis Bio-oils by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2012, 26, 3810-3815.	5.1	93
20	Unprecedented Ultrahigh Resolution FT-ICR Mass Spectrometry and Parts-Per-Billion Mass Accuracy Enable Direct Characterization of Nickel and Vanadyl Porphyrins in Petroleum from Natural Seeps. Energy &	5.1	88
21	Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environmental Science & Technology, 2021, 55, 9637-9656.	10.0	88
22	Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil. Journal of Hazardous Materials, 2014, 280, 636-643.	12.4	83
23	Characterization of Pyrogenic Black Carbon by Desorption Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 1281-1287.	6.5	80
24	Synthesis and characterization of lignin-based carbon materials with tunable microstructure. RSC Advances, 2014, 4, 4743-4753.	3.6	75
25	A new conceptual framework for the transformation of groundwater dissolved organic matter. Nature Communications, 2022, 13, 2153.	12.8	69
26	Conversion of Lignin Precursors to Carbon Fibers with Nanoscale Graphitic Domains. ACS Sustainable Chemistry and Engineering, 2014, 2, 2002-2010.	6.7	68
27	1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6978-E6986.	7.1	68
28	Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. Organic Geochemistry, 2010, 41, 812-821.	1.8	66
29	4 Years after the <i>Deepwater Horizon</i> Spill: Molecular Transformation of Macondo Well Oil in Louisiana Salt Marsh Sediments Revealed by FT-ICR Mass Spectrometry. Environmental Science & Emp; Technology, 2016, 50, 9061-9069.	10.0	66
30	Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: a river continuum reprise. Biogeochemistry, 2015, 124, 371-385.	3.5	60
31	Structural Characterization of Natural Nickel and Copper Binding Ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Frontiers in Marine Science, 2016, 3, .	2.5	60
32	Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge. Water Research, 2020, 169, 115201.	11.3	60
33	The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. Rapid Communications in Mass Spectrometry, 2010, 24, 784-790.	1.5	56
34	Joint Industrial Case Study for Asphaltene Deposition. Energy & Energy & 2013, 27, 1899-1908.	5.1	56
35	Oil Spill Source Identification by Principal Component Analysis of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry, 2013, 85, 9064-9069.	6.5	51
36	Macromolecular Characterization of Compound Selectivity for Oxidation and Oxidative Alterations of Dissolved Organic Matter by Manganese Oxide. Environmental Science & Enviro	10.0	46

3

#	Article	IF	CITATIONS
37	Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Analysis of Complex Mixtures. Analytical Chemistry, 2011, 83, 1616-1623.	6.5	45
38	Chromatographic Enrichment and Subsequent Separation of Nickel and Vanadyl Porphyrins from Natural Seeps and Molecular Characterization by Positive Electrospray Ionization FT-ICR Mass Spectrometry. Analytical Chemistry, 2014, 86, 10708-10715.	6.5	45
39	Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae. AICHE Journal, 2016, 62, 815-828.	3.6	45
40	Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil. Energy & Energy & Fuels, 2011, 25, 172-182.	5.1	44
41	Silver Cationization for Rapid Speciation of Sulfur-Containing Species in Crude Oils by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy Fuels, 2014, 28, 447-452.	5.1	43
42	Molecular-Level Characterization of Oil-Soluble Ketone/Aldehyde Photo-Oxidation Products by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Similarity Between Microcosm and Field Samples. Environmental Science & Environmental	10.0	43
43	Mass Resolution and Mass Accuracy: How Much Is Enough?. Mass Spectrometry, 2013, 2, S0009-S0009.	0.6	39
44	Tailored Ion Radius Distribution for Increased Dynamic Range in FT-ICR Mass Analysis of Complex Mixtures. Analytical Chemistry, 2013, 85, 265-272.	6.5	38
45	Plastic Formulation is an Emerging Control of Its Photochemical Fate in the Ocean. Environmental Science & Environmental Scien	10.0	38
46	Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers. Geochimica Et Cosmochimica Acta, 2020, 273, 163-176.	3.9	37
47	Molecular Evidence of Heavy-Oil Weathering Following the M/V <i>Cosco Busan </i> Spill: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Eamp; Technology, 2014, 48, 3760-3767.	10.0	35
48	Correlations between Molecular Composition and Adsorption, Aggregation, and Emulsifying Behaviors of PetroPhase 2017 Asphaltenes and Their Thin-Layer Chromatography Fractions. Energy & Lamp; Fuels, 2018, 32, 2769-2780.	5.1	35
49	Photochemical changes in water accommodated fractions of MC252 and surrogate oil created during solar exposure as determined by FT-ICR MS. Marine Pollution Bulletin, 2016, 104, 262-268.	5.0	34
50	Molecular-Level Characterization of Asphaltenes Isolated from Distillation Cuts. Energy & Ene	5.1	34
51	PFAS Analysis with Ultrahigh Resolution 21T FT-ICR MS: Suspect and Nontargeted Screening with Unrivaled Mass Resolving Power and Accuracy. Environmental Science & Environment	10.0	34
52	Unprecedented Insights into the Chemical Complexity of Coal Tar from Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry and Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2015, 29, 641-648.	5.1	33
53	Selective Ionization of Dissolved Organic Nitrogen by Positive Ion Atmospheric Pressure Photoionization Coupled with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 5085-5090.	6.5	31
54	High Field Electron Paramagnetic Resonance Characterization of Electronic and Structural Environments for Paramagnetic Metal Ions and Organic Free Radicals in Deepwater Horizon Oil Spill Tar Balls. Analytical Chemistry, 2015, 87, 2306-2313.	6.5	31

#	Article	IF	CITATIONS
55	Deciphering Dissolved Organic Matter: Ionization, Dopant, and Fragmentation Insights via Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Education (1997), 2020, 54, 16249-16259.	10.0	31
56	Tetramethylammonium Hydroxide as a Reagent for Complex Mixture Analysis by Negative Ion Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 7803-7808.	6.5	27
57	Compositional Analysis of Oil Residues by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2013, 27, 2002-2009.	5.1	27
58	The Impact of Carbon Source as Electron Donor on Composition and Concentration of Dissolved Organic Nitrogen in Biosorption-Activated Media for Stormwater and Groundwater Co-Treatment. Environmental Science & Environmental	10.0	27
59	High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. Environmental Science & Echnology, 2020, 54, 9374-9386.	10.0	27
60	Direct Analysis of Thin-Layer Chromatography Separations of Petroleum Samples by Laser Desorption lonization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging. Energy & Energy Fuels, 2014, 28, 6284-6288.	5.1	25
61	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Athabasca Oil Sand Process-Affected Waters Incubated in the Presence of Wetland Plants. Energy & Energy & 2017, 31, 1731-1740.	5.1	25
62	Statistically Significant Differences in Composition of Petroleum Crude Oils Revealed by Volcano Plots Generated from Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectra. Energy & Energy	5.1	25
63	Composition-Dependent Sorptive Fractionation of Anthropogenic Dissolved Organic Matter by Fe(III)-Montmorillonite. Soil Systems, 2018, 2, 14.	2.6	25
64	Metal oxide supported Ni-impregnated bifunctional catalysts for controlling char formation and maximizing energy recovery during catalytic hydrothermal liquefaction of food waste. Sustainable Energy and Fuels, 2021, 5, 941-955.	4.9	23
65	Advances and Challenges in the Molecular Characterization of Petroporphyrins. Energy & Samp; Fuels, 2021, 35, 18056-18077.	5.1	23
66	Waxphaltene Determinator Method for Automated Precipitation and Redissolution of Wax and Asphaltene Components. Energy & Energy & 2012, 26, 2256-2268.	5.1	22
67	Lithium Cationization for Petroleum Analysis by Positive Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 14, 28, 6841-6847.	5.1	22
68	Climatic, land cover, and anthropogenic controls on dissolved organic matter quantity and quality from major alpine rivers across the Himalayan-Tibetan Plateau. Science of the Total Environment, 2021, 754, 142411.	8.0	22
69	Enhanced Speciation of Pyrogenic Organic Matter from Wildfires Enabled by 21 T FT-ICR Mass Spectrometry. Analytical Chemistry, 2022, 94, 2973-2980.	6.5	22
70	Lessons Learned from a Decade-Long Assessment of Asphaltenes by Ultrahigh-Resolution Mass Spectrometry and Implications for Complex Mixture Analysis. Energy & Energy & 2021, 35, 16335-16376.	5.1	21
71	Applications of comprehensive two-dimensional gas chromatography (GCÂ×ÂGC) inÂstudying the source, transport, andÂfate of petroleum hydrocarbons inÂthe environment. , 2016, , 399-448.		20
72	Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environmental Science & E	10.0	20

#	Article	IF	Citations
73	Petroleomics: A Test Bed for Ultra-High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 367-371.	1.0	19
74	Molecular Transformation of Crude Oil Contaminated Soil after Bioelectrochemical Degradation Revealed by FT-ICR Mass Spectrometry. Environmental Science & Environmental Science & 2020, 54, 2500-2509.	10.0	19
75	Evaluation of the Extraction Method and Characterization of Water-Soluble Organics from Produced Water by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & Fuels, 2013, 27, 1846-1855.	5.1	18
76	Bioactivity of Humic Acids Extracted From Shale Ore: Molecular Characterization and Structure-Activity Relationship With Tomato Plant Yield Under Nutritional Stress. Frontiers in Plant Science, 2021, 12, 660224.	3.6	18
77	Detailed Compositional Characterization of the 2014 Bangladesh Furnace Oil Released into the World's Largest Mangrove Forest. Energy & Detailed Science (1988) 1881 (1988) 2018, 32, 3232-3242.	5.1	17
78	Comprehensive Analysis of Changes in Crude Oil Chemical Composition during Biosouring and Treatments. Environmental Science &	10.0	15
79	Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biological pretreatment. Waste Management, 2020, 106, 88-98.	7.4	15
80	Fremyella diplosiphon as a Biodiesel Agent: Identification of Fatty Acid Methyl Esters via Microwave-Assisted Direct In Situ Transesterification. Bioenergy Research, 2018, 11, 528-537.	3.9	13
81	Expanding the Analytical Window for Biochar Speciation: Molecular Comparison of Solvent Extraction and Water-Soluble Fractions of Biochar by FT-ICR Mass Spectrometry. Analytical Chemistry, 2021, 93, 15365-15372.	6.5	13
82	Unique Molecular Features of Water-Soluble Photo-Oxidation Products among Refined Fuels, Crude Oil, and Herded Burnt Residue under High Latitude Conditions. ACS ES&T Water, 2022, 2, 994-1002.	4.6	12
83	Spatioâ€ŧemporal changes in dissolved organic matter composition along the salinity gradient of a marshâ€influenced estuarine complex. Limnology and Oceanography, 2021, 66, 3040-3054.	3.1	11
84	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	6.8	11
85	Molecular Comparison of Solid-Phase Extraction and Liquid/Liquid Extraction of Water-Soluble Petroleum Compounds Produced through Photodegradation and Biodegradation by FT-ICR Mass Spectrometry. Analytical Chemistry, 2021, 93, 4611-4618.	6.5	10
86	Fate and transport processes of nitrogen in biosorption activated media for stormwater treatment at varying field conditions of a roadside linear ditch. Environmental Research, 2020, 181, 108915.	7.5	9
87	The interaction of dissolved organic nitrogen removal and microbial abundance in iron-filings based green environmental media for stormwater treatment. Environmental Research, 2020, 188, 109815.	7.5	9
88	Elucidating the role of reactive nitrogen intermediates in hetero-cyclization during hydrothermal liquefaction of food waste. Green Chemistry, 2022, 24, 5125-5141.	9.0	9
89	Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Oil Sand Process-Affected Water in Constructed Wetland Treatment. Energy & Evels, 2019, 33, 4420-4431.	5.1	8
90	Time-dependent molecular progression and acute toxicity of oil-soluble, interfacially-active, and water-soluble species reveals their rapid formation in the photodegradation of Macondo Well Oil. Science of the Total Environment, 2022, 813, 151884.	8.0	7

#	Article	IF	CITATIONS
91	Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006516.	3.0	7
92	Copper impact on enzymatic cascade and extracellular sequestration via distinctive pathways of nitrogen removal in green sorption media at varying stormwater field conditions. Chemosphere, 2020, 243, 125399.	8.2	3
93	Discovery of Oxygenated Hydrocarbon Biodegradation Products at a Late-Stage Petroleum Release Site. Energy & Site. Energy & Energ	5.1	3
94	Biodegradation at the Seafloor: Ultrahigh Resolution FT-ICR Mass Spectral Characterization of Natural Petroleum Seeps. International Oil Spill Conference Proceedings, 2014, 2014, 2083-2097.	0.1	0