Martin Storr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10593671/publications.pdf

Version: 2024-02-01

279798 302126 2,405 46 23 39 h-index citations g-index papers 46 46 46 3273 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The endogenous cannabinoid system protects against colonic inflammation. Journal of Clinical Investigation, 2004, 113, 1202-1209.	8.2	354
2	The endogenous cannabinoid system protects against colonic inflammation. Journal of Clinical Investigation, 2004, 113, 1202-1209.	8.2	217
3	Quantitative Metabolomic Profiling of Serum, Plasma, and Urine by $<$ sup $>$ 1 $<$ /sup $>$ H NMR Spectroscopy Discriminates between Patients with Inflammatory Bowel Disease and Healthy Individuals. Journal of Proteome Research, 2012, 11, 3344-3357.	3.7	200
4	Distribution, function and physiological role of melatonin in the lower gut. World Journal of Gastroenterology, $2011, 17, 3888$.	3.3	173
5	Cannabis Use Provides Symptom Relief in Patients with Inflammatory Bowel Disease but Is Associated with Worse Disease Prognosis in Patients with Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 472-480.	1.9	169
6	The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. Journal of Molecular Medicine, 2005, 83, 944-954.	3.9	123
7	The Pathophysiology of Chronic Constipation. Canadian Journal of Gastroenterology & Hepatology, 2011, 25, 168-218.	1.7	107
8	The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflammatory Bowel Diseases, 2011, 17, 1651-1664.	1.9	95
9	STW 5 (Iberogast®)—a safe and effective standard in the treatment of functional gastrointestinal disorders. Wiener Medizinische Wochenschrift, 2013, 163, 65-72.	1.1	92
10	Quantitative Metabolomic Profiling of Serum and Urine in DSS-Induced Ulcerative Colitis of Mice by ¹ H NMR Spectroscopy. Journal of Proteome Research, 2010, 9, 6265-6273.	3.7	87
11	Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go?. Expert Review of Gastroenterology and Hepatology, 2017, 11, 329-337.	3.0	70
12	Topical and Systemic Cannabidiol Improves Trinitrobenzene Sulfonic Acid Colitis in Mice. Pharmacology, 2012, 89, 149-155.	2.2	69
13	A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology, 2013, 71, 255-263.	4.1	64
14	Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors. PLoS ONE, 2014, 9, e109115.	2.5	59
15	The Cannabinoid 1 Receptor (CNR1) 1359 G/A Polymorphism Modulates Susceptibility to Ulcerative Colitis and the Phenotype in Crohn's Disease. PLoS ONE, 2010, 5, e9453.	2.5	50
16	Metabolomics. Current Opinion in Gastroenterology, 2013, 29, 378-383.	2.3	48
17	Cannabinoid-1 (CB $<$ sub $>$ 1 $<$ /sub $>$) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. American Journal of Physiology - Renal Physiology, 2009, 296, G119-G128.	3.4	42
18	Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases. Clinical and Translational Gastroenterology, 2020, 11, e00120.	2.5	42

#	Article	IF	Citations
19	Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. American Journal of Physiology - Renal Physiology, 2013, 304, G181-G192.	3.4	34
20	Structural differences in the enteric neural network in murine colon: impact on electrophysiology. American Journal of Physiology - Renal Physiology, 2003, 285, G1325-G1334.	3.4	33
21	Alternative Targets Within the Endocannabinoid System for Future Treatment of Gastrointestinal Diseases. Canadian Journal of Gastroenterology & Hepatology, 2011, 25, 377-383.	1.7	29
22	Evaluating the Multitarget Effects of Combinations through Multistep Clustering of Pharmacological Data: the Example of the Commercial Preparation Iberogast. Planta Medica, 2017, 83, 1130-1140.	1.3	26
23	Efficacy and Safety of Serotonin Receptor Ligands in the Treatment of Irritable Bowel Syndrome: A Review. Current Drug Targets, 2018, 19, 1774-1781.	2.1	25
24	The impact of technical and clinical factors on fecal microbiota transfer outcomes for the treatment of recurrent <i>Clostridioides difficile </i> infections in Germany. United European Gastroenterology Journal, 2019, 7, 716-722.	3.8	24
25	Modulation of gastrointestinal motility beyond metoclopramide and domperidone. Wiener Medizinische Wochenschrift, 2017, 167, 160-168.	1.1	21
26	Melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, attenuates TNBS-induced colitis in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 511-519.	3.0	18
27	The Dual Effect of Cannabinoid Receptor-1 Deficiency on the Murine Postoperative lleus. PLoS ONE, 2013, 8, e67427.	2.5	17
28	RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives. BioEssays, 2016, 38, 344-354.	2.5	15
29	Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handbook of Experimental Pharmacology, 2016, 239, 343-362.	1.8	15
30	Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behavioural Brain Research, 2016, 307, 199-207.	2.2	15
31	Canadian Association of Gastroenterology Position Statement: Use of Cannabis in Gastroenterological and Hepatic Disorders. Journal of the Canadian Association of Gastroenterology, 2019, 2, 37-43.	0.3	14
32	Patients with IBD find symptom relief in the Cannabis field. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 142-143.	17.8	13
33	Desensitization of transient receptor potential vanilloid type-1 (TRPV1) channel as promising therapy of irritable bowel syndrome: characterization of the action of palvanil in the mouse gastrointestinal tract. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 1357-1364.	3.0	12
34	Nonprogressive, Long-Term Dysphagia in a Patient With Esophageal Lichen Planus. Clinical Gastroenterology and Hepatology, 2009, 7, A24.	4.4	7
35	Medical Cannabis and Cannabinoids: An Option for the Treatment of Inflammatory Bowel Disease and Cancer of the Colon?. Medical Cannabis and Cannabinoids, 2018, 1, 28-35.	3.3	6
36	Gastrointestinal Adverse Events of Cannabinoid 1 Receptor Inverse Agonists suggest their Potential Use in Irritable Bowel Syndrome with Constipation: A Systematic Review and Meta-Analysis. Journal of Gastrointestinal and Liver Diseases, 2019, 28, 473-481.	0.9	6

#	Article	IF	CITATIONS
37	Nociceptin effect on intestinal motility depends on opioid-receptor like-1 receptors and nitric oxide synthase co-localization. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2015, 6, 73.	1.1	6
38	Novel derivatives of 1,2,3-triazole, cannabinoid-1 receptor ligands modulate gastrointestinal motility in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 435-444.	3.0	3
39	The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats. Pharmacological Reports, 2014, 66, 256-263.	3.3	2
40	Wirksamkeit, VertrÄglichkeit und Sicherheit von medizinischem Cannabis. , 2019, , 265-426.		2
41	Cannabiskonsum zum Freizeitgebrauch. , 2019, , 65-264.		1
42	Reflux Disease as a Motility Disorder: Treatment Alternatives to Acid Suppression. Gastroenterology, 2010, 139, 2207-2209.	1.3	0
43	Irritable Bowel Syndrome: A Dysfunction of the Endocannabinoid System?. Gastroenterology, 2012, 142, 406-408.	1.3	O
44	Interventions for induction of mucosal healing in ulcerative colitis. The Cochrane Library, 0, , .	2.8	0
45	Interventions for maintenance of mucosal healing in ulcerative colitis. The Cochrane Library, 0, , .	2.8	0
46	Interventions for induction and maintenance of mucosal healing in Crohn's disease. The Cochrane Library, $0, , .$	2.8	0