
Ilija Ilić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1059358/publications.pdf Version: 2024-02-01

+مديا ميريا

#	Article	IF	CITATIONS
1	Predicting Drug Release Rate of Implantable Matrices and Better Understanding of the Underlying Mechanisms through Experimental Design and Artificial Neural Network-Based Modelling. Pharmaceutics, 2022, 14, 228.	4.5	1
2	The influence of SMEDDS composition and the water ratio in granulation dispersion on attributes of granules prepared by wet granulation. , 2022, , .		0
3	Investigation of drug-matrix interaction in directly compressed matrices. , 2021, , .		Ο
4	Treatment of canine cognitive dysfunction with novel butyrylcholinesterase inhibitor. Scientific Reports, 2021, 11, 18098.	3.3	12
5	High-Molecular-Weight Hypromellose from Three Different Suppliers: Effects of Compression Speed, Tableting Equipment, and Moisture on the Compaction. AAPS PharmSciTech, 2020, 21, 203.	3.3	3
6	An Investigation into the Influence of Process Parameters and Formulation Variables on Compaction Properties of Liquisolid Systems. AAPS PharmSciTech, 2020, 21, 242.	3.3	6
7	Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. International Journal of Pharmaceutics, 2020, 583, 119377.	5.2	11
8	Characterization of industrial aluminum trihydrate-filled poly(methyl methacrylate) composite powder. Journal of Adhesion Science and Technology, 2019, 33, 2517-2534.	2.6	5
9	Proactive Release of Antimicrobial Essential Oil from a "Smart―Cotton Fabric. Coatings, 2019, 9, 242.	2.6	5
10	Comparison of responsive behaviour of smart PLA fabrics applied with temperature and pH responsive microgel and nanogel. Progress in Organic Coatings, 2018, 124, 213-223.	3.9	6
11	Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity. European Journal of Pharmaceutical Sciences, 2018, 121, 218-227.	4.0	15
12	Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. International Journal of Pharmaceutics, 2018, 548, 263-275.	5.2	35
13	High-shear granulation of high-molecular weight hypromellose: effects of scale-up and process parameters on flow and compaction properties. Drug Development and Industrial Pharmacy, 2018, 44, 1770-1782.	2.0	8
14	Spherical agglomerates of lactose with enhanced mechanical properties. International Journal of Pharmaceutics, 2017, 516, 247-257.	5.2	46
15	Flow and compaction properties of hypromellose: new directly compressible versus the established grades. Drug Development and Industrial Pharmacy, 2016, 42, 1877-1886.	2.0	15
16	Effect of the surface free energy of materials on the lamination tendency of bilayer tablets. International Journal of Pharmaceutics, 2015, 496, 609-613.	5.2	10
17	Impact of microcrystalline cellulose material attributes: A case study on continuous twin screw granulation. International Journal of Pharmaceutics, 2015, 478, 705-717.	5.2	53
18	Nanomechanical Properties of Selected Single Pharmaceutical Crystals as a Predictor of Their Bulk Behaviour. Pharmaceutical Research, 2015, 32, 469-481.	3.5	24

Ilija Ilić

#	Article	IF	CITATIONS
19	Melt granulation in fluidized bed: a comparative study of spray-on versus <i>in situ</i> procedure. Drug Development and Industrial Pharmacy, 2014, 40, 23-32.	2.0	8
20	Influence of the physiological variability of fasted gastric pH and tablet retention time on the variability of in vitro dissolution and simulated plasma profiles. International Journal of Pharmaceutics, 2014, 473, 552-559.	5.2	10
21	Compaction properties of crystalline pharmaceutical ingredients according to the Walker model and nanomechanical attributes. International Journal of Pharmaceutics, 2014, 472, 347-355.	5.2	25
22	In silico modeling of in situ fluidized bed melt granulation. International Journal of Pharmaceutics, 2014, 466, 21-30.	5.2	20
23	Application of Physicochemical Properties and Process Parameters in the Development of a Neural Network Model for Prediction of Tablet Characteristics. AAPS PharmSciTech, 2013, 14, 511-516.	3.3	5
24	Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. International Journal of Pharmaceutics, 2013, 446, 6-15.	5.2	68
25	Consolidation trend design based on Young's modulus of clarithromycin single crystals. International Journal of Pharmaceutics, 2013, 454, 324-332.	5.2	5
26	A compressibility and compactibility study of real tableting mixtures: the effect of granule particle size. Acta Pharmaceutica, 2012, 62, 325-340.	2.0	44
27	An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation. International Journal of Pharmaceutics, 2012, 423, 202-212.	5.2	24
28	The use of single particle mechanical properties for predicting the compressibility of pharmaceutical materials. Powder Technology, 2012, 225, 43-51.	4.2	33
29	Development of a multiple-unit tablet containing enteric-coated pellets. Pharmaceutical Development and Technology, 2011, 16, 118-126.	2.4	14
30	A compressibility and compactibility study of real tableting mixtures: The impact of wet and dry granulation versus a direct tableting mixture. International Journal of Pharmaceutics, 2011, 414, 131-139.	5.2	72
31	Mapping the local elastic properties of pharmaceutical solids using atomic force microscopy. Procedia Engineering, 2011, 10, 2857-2866.	1.2	2
32	A modification of the Pr value equation for measuring the compactibility of pharmaceutical materials. Chemical Engineering and Processing: Process Intensification, 2010, 49, 881-884.	3.6	1
33	Microparticle size control and glimepiride microencapsulation using spray congealing technology. International Journal of Pharmaceutics, 2009, 381, 176-183.	5.2	79
34	The compressibility and compactibility of different types of lactose. Drug Development and Industrial Pharmacy, 2009, 35, 1271-1280.	2.0	58