
Alejandro V Villarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10591196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106083119.	3.3	7
2	IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca ²⁺ through the noncanonical STAT3 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
3	Dynamics of genomic and immune responses during primary immunotherapy resistance in mismatch repair–deficient tumors. Journal of Physical Education and Sports Management, 2020, 6, a005678.	0.5	3
4	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	6.6	46
5	Divergent Role for STAT5 in the Adaptive Responses of Natural Killer Cells. Cell Reports, 2020, 33, 108498.	2.9	32
6	SnapShot: Jak-STAT Signaling II. Cell, 2020, 181, 1696-1696.e1.	13.5	53
7	IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Science Immunology, 2020, 5, .	5.6	32
8	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.4	29
9	Mechanisms and consequences of Jak–STAT signaling in the immune system. Nature Immunology, 2017, 18, 374-384.	7.0	870
10	Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 2999-3014.	4.2	85
11	IL-7–dependent STAT1 activation limits homeostatic CD4+ T cell expansion. JCI Insight, 2017, 2, .	2.3	15
12	An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Research, 2016, 44, 1052-1063.	6.5	44
13	IL-1 watches the watchmen. Nature Immunology, 2015, 16, 226-227.	7.0	6
14	The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annual Review of Medicine, 2015, 66, 311-328.	5.0	1,074
15	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	6.6	137
16	Mechanisms of Jak/STAT Signaling in Immunity and Disease. Journal of Immunology, 2015, 194, 21-27.	0.4	440
17	A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood, 2014, 123, 2978-2987.	0.6	71
18	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	2.8	76

#	Article	IF	CITATIONS
19	Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.	13.5	1,715
20	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 2013, 210, 417-432.	4.2	180
21	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Cell Biology, 2013, 200, i9-i9.	2.3	0
22	Distinct requirements for T-bet in gut innate lymphoid cells. Journal of Experimental Medicine, 2012, 209, 2331-2338.	4.2	160
23	ILâ€13â€producing Th1 and Th17 cells characterize adaptive responses to both self and foreign antigens. European Journal of Immunology, 2012, 42, 2322-2328.	1.6	39
24	Posttranscriptional Silencing of Effector Cytokine mRNA Underlies the Anergic Phenotype of Self-Reactive T Cells. Immunity, 2011, 34, 50-60.	6.6	56
25	Cutting Edge: The Th1 Response Inhibits the Generation of Peripheral Regulatory T Cells. Journal of Immunology, 2010, 184, 30-34.	0.4	100
26	STAT1-Activating Cytokines Limit Th17 Responses through Both T-bet–Dependent and –Independent Mechanisms. Journal of Immunology, 2010, 185, 6461-6471.	0.4	103
27	Duration of antigen receptor signaling determines T-cell tolerance or activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18085-18090.	3.3	75
28	IL-27R deficiency delays the onset of colitis and protects from helminth-induced pathology in a model of chronic IBD. International Immunology, 2008, 20, 739-752.	1.8	47
29	Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. Journal of Experimental Medicine, 2007, 204, 65-71.	4.2	112
30	Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nature Immunology, 2006, 7, 937-945.	7.0	874
31	Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. Journal of Experimental Medicine, 2006, 203, 2785-2791.	4.2	210
32	IL-27 Limits IL-2 Production during Th1 Differentiation. Journal of Immunology, 2006, 176, 237-247.	0.4	196
33	Positive and Negative Regulation of the IL-27 Receptor during Lymphoid Cell Activation. Journal of Immunology, 2005, 174, 7684-7691.	0.4	154
34	TLR Ligands Can Activate Dendritic Cells to Provide a MyD88-Dependent Negative Signal for Th2 Cell Development. Journal of Immunology, 2005, 174, 742-751.	0.4	70
35	Understanding the Pro- and Anti-Inflammatory Properties of IL-27. Journal of Immunology, 2004, 173, 715-720.	0.4	210
36	Biology of recently discovered cytokines: discerning the pro- and anti-inflammatory properties of interleukin-27. Arthritis Research, 2004, 6, 225.	2.0	52

#	Article	IF	CITATIONS
37	Role of T-bet in Commitment of TH1 Cells Before IL-12-Dependent Selection. Science, 2001, 292, 1907-1910.	6.0	730
38	Cell cycle controlling the silencing and functioning of mammalian activators. Current Biology, 2001, 11, 1695-1699.	1.8	63
39	Induction of Cytotoxic T Lymphocyte Antigen 4 (Ctla-4) Restricts Clonal Expansion of Helper T Cells. Journal of Experimental Medicine, 2001, 194, 893-902.	4.2	95