Uttam Chand Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10591170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learning Modeling for Ultrasonication-Mediated Fermentation of Penicillium brevicompactum to Enhance the Release of Mycophenolic Acid. Ultrasound in Medicine and Biology, 2021, 47, 777-786.	0.7	4
2	In vivo safety, toxicity, biocompatibility and anti-tumour efficacy of bioinspired silver and selenium nanoparticles. Materials Today Communications, 2021, 26, 102001.	0.9	10
3	Optimization of medium composition to increase the expression of recombinant human interferon-β using the Plackett–Burman and central composite design in E. coli SE1. 3 Biotech, 2021, 11, 226.	1.1	7
4	Insights on the polypyrrole based nanoformulations for photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2021, 25, 605-622.	0.4	4
5	Screening, isolation and selection of a potent lipase producing microorganism and its use in the kinetic resolution of drug intermediates. Journal of the Indian Chemical Society, 2021, 98, 100143.	1.3	9
6	Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis. Catalysts, 2021, 11, 1328.	1.6	10
7	Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102147.	1.7	31
8	Optimization of media and culture conditions for the production of tacrolimus by Streptomyces tsukubaensis in shake flask and fermenter level. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101803.	1.5	12
9	Liposomal Delivery of Mycophenolic Acid With Quercetin for Improved Breast Cancer Therapy in SD Rats. Frontiers in Bioengineering and Biotechnology, 2020, 8, 631.	2.0	28
10	Purification and characterization of arginine deiminase from Pseudomonas putida: Structural insights of the differential affinities of l-arginine analogues. Journal of Bioscience and Bioengineering, 2019, 127, 129-137.	1.1	11
11	Machine learning modelling for the ultrasonication-mediated disruption of recombinant E. coli for the efficient release of nitrilase. Ultrasonics, 2019, 98, 72-81.	2.1	4
12	Antibiotic-free expression system for the production of human interferon-beta protein. 3 Biotech, 2018, 8, 36.	1.1	6
13	Bioreactor studies of production of mycophenolic acid by Penicillium brevicompactum. Biochemical Engineering Journal, 2018, 140, 77-84.	1.8	16
14	Generation of novel family of reductases from PCR based library for the synthesis of chiral alcohols and amines. Enzyme and Microbial Technology, 2018, 118, 83-91.	1.6	0
15	Facile fabrication of a recyclable nanobiocatalyst: immobilization of <i>Burkholderia cepacia</i> lipase on carbon nanofibers for the kinetic resolution of a racemic atenolol intermediate. RSC Advances, 2018, 8, 27763-27774.	1.7	14
16	Machine learning modelling for the high-pressure homogenization-mediated disruption of recombinant E. coli. Process Biochemistry, 2018, 71, 182-190.	1.8	8
17	Combined effect of attrition and ultrasound on the disruption of <i>Pseudomonas putida</i> for the efficient release of arginine deiminase. Biotechnology Progress, 2018, 34, 1185-1194.	1.3	9
18	Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: Kinetics and predictive models. Bioresource Technology, 2017, 233, 74-83.	4.8	23

#	Article	IF	CITATIONS
19	Surfactant-mediated permeabilization of Pseudomonas putida KT2440 and use of the immobilized permeabilized cells in biotransformation. Process Biochemistry, 2017, 63, 113-121.	1.8	27
20	Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation. Applied Biochemistry and Biotechnology, 2017, 182, 97-109.	1.4	24
21	Current status and future prospects of nanobiomaterials in drug delivery. , 2016, , 147-170.		10
22	Chemoenzymatic Route for the Synthesis of (<i>S</i>)â€Moprolol, a Potential βâ€Blocker. Chirality, 2016, 28, 313-318.	1.3	9
23	In silico approach towards lipase mediated chemoenzymatic synthesis of (S)-ranolazine, as an anti-anginal drug. RSC Advances, 2016, 6, 49150-49157.	1.7	5
24	Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase. AMB Express, 2016, 6, 84.	1.4	16
25	Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports (Amsterdam, Netherlands), 2016, 11, 77-85.	2.1	39
26	Use of response surface method for maximizing the production of arginine deiminase by Pseudomonas putida. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 29-37.	2.1	31
27	Biocatalytic deracemization: An efficient one-pot synthesis of (R)-α-methyl-4-pyridinemethanol using whole cells of Candida parapsilosis. Biocatalysis, 2015, 1, .	2.3	2
28	Biocatalytic Approach for the Synthesis of Enantiopure Acebutolol as a <i>β₁</i> ‣elective Blocker. Chirality, 2015, 27, 382-391.	1.3	12
29	Induction of Apoptosis and Reduction of Endogenous Glutathione Level by the Ethyl-Acetate Soluble Fraction of the Methanol Extract of the Roots of Potentilla fulgens in Cancer Cells. PLoS ONE, 2015, 10, e0135890.	1.1	11
30	Lipase-catalyzed green synthesis of enantiopure atenolol. RSC Advances, 2015, 5, 15850-15860.	1.7	38
31	Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Materials Science and Engineering C, 2015, 53, 120-127.	3.8	118
32	Qualitative and Quantitative Analysis of <i>Potentilla fulgens</i> Roots by NMR, Matrixâ€assisted Laser Desorption/Ionisation with Timeâ€ofâ€Flight MS, Electrospray Ionisation MS/MS and HPLC/UV. Phytochemical Analysis, 2015, 26, 161-170.	1.2	18
33	Applications of phototheranostic nanoagents in photodynamic therapy. Nano Research, 2015, 8, 1373-1394.	5.8	94
34	Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochemistry, 2014, 49, 655-659.	1.8	22
35	Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 2014, 415, 39-47.	5.0	272
36	An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	40

#	Article	IF	CITATIONS
37	Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. Journal of Colloid and Interface Science, 2014, 431, 194-199.	5.0	207
38	Enantioselective bioreduction of cyclic alkanones by whole cells ofCandidaSpecies. Biocatalysis and Biotransformation, 2013, 31, 123-131.	1.1	9
39	Two new stereoisomeric antioxidant triterpenes from Potentilla fulgens. Fìtoterapìâ, 2013, 91, 290-297.	1.1	35
40	Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 2013, 31, 346-356.	6.0	1,790
41	One-pot synthesis of (R)-1-(1-naphthyl)ethanol by stereoinversion using Candida parapsilosis. Tetrahedron Letters, 2013, 54, 3274-3277.	0.7	16
42	Synthesis of Gold Nanoparticles Using Whole Cells of Geotrichum candidum. Journal of Nanoparticles, 2013, 2013, 1-6.	1.4	23
43	Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomedicine and Engineering, 2012, 4, .	0.3	127
44	New chemo-enzymatic synthesis of (R)-1-chloro-3-(piperidin-1-yl) propan-2-ol. Tetrahedron: Asymmetry, 2012, 23, 1564-1570.	1.8	12
45	Asymmetric reduction of a ketone by wet and lyophilized cells of Geotrichum candidum in organic solvents. New Biotechnology, 2012, 29, 359-364.	2.4	6
46	Extracellular Biosynthesis of Silver Nanoparticles Using Aqueous Extract of <i>Candida viswanathii</i> . Journal of Bionanoscience, 2011, 5, 53-58.	0.4	19
47	Lipase-mediated kinetic resolution of (RS)-1-bromo-3-[4-(2-methoxy-ethyl)-phenoxy]-propan-2-ol to (R)-1-bromo-3-(4-(2-methoxyethyl) phenoxy) propan-2-yl acetate. Tetrahedron Letters, 2011, 52, 5355-5358.	0.7	6
48	Stabilization of Lysozyme by Benzyl Alcohol: Surface Tension and Thermodynamic Parameters. Journal of Pharmaceutical Sciences, 2010, 99, 4149-4161.	1.6	15
49	Enantioselective transesterification of racemic phenyl ethanol and its derivatives in organic solvent and ionic liquid using Pseudomonas aeruginosa lipase. Process Biochemistry, 2010, 45, 25-29.	1.8	35
50	Stereoselective synthesis of (R)-1-chloro-3(3,4-difluorophenoxy)-2-propanol using lipases from Pseudomonas aeruginosa in ionic liquid-containing system. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 294-299.	1.8	29
51	Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous-organic solvent system. Bioresource Technology, 2009, 100, 1041-1047.	4.8	29
52	Role of benzyl alcohol in the prevention of heat-induced aggregation and inactivation of hen egg white lysozyme. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 367-376.	2.0	19
53	Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase. Bioresource Technology, 2008, 99, 2116-2120.	4.8	28
54	Production of carbonyl reductase by Geotrichum candidum in a laboratory scale bioreactor. Bioresource Technology, 2008, 99, 8765-8770.	4.8	20

#	Article	IF	CITATIONS
55	Nitrile Hydrolases. , 2007, , 531-547.		8
56	Enantioselective transesterification of (RS)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol using Pseudomonas aeruginosa lipases. Tetrahedron: Asymmetry, 2007, 18, 2079-2085.	1.8	16
57	Stereoselective Nitrile Hydrolysis by Immobilized Whole-Cell Biocatalyst. Biomacromolecules, 2006, 7, 1536-1541.	2.6	53
58	Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158. Biotechnology Journal, 2006, 1, 80-85.	1.8	37
59	A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnology and Applied Biochemistry, 2003, 37, 289.	1.4	55
60	Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19, 627-662.	6.0	1,152
61	Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp Enzyme and Microbial Technology, 1999, 24, 433-437.	1.6	211
62	Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 1998, 22, 185-191.	1.6	284
63	Transformation of rifamycin B with growing and resting cells of Curvularia lunata. Enzyme and Microbial Technology, 1993, 15, 1037-1041.	1.6	3
64	Transformation of rifamycin B with immobilized rifamycin oxidase of Curvularia lunata. Biotechnology Letters, 1993, 7, 339-345.	0.5	3
65	Effect of stirrer speed, aeration rate and cell mass concentration on volumetric oxygen transfer coefficients (KLa) in the cultivation of Curvularia lunata in a batch reactor. Biotechnology Letters, 1993, 7, 733-738.	0.5	5
66	Effect of glucose and carboxymethylcellulose on growth and rifamycin oxidase production byCurvularia lunata. Current Microbiology, 1993, 26, 261-265.	1.0	4
67	Characterization of Rifamycin Oxidase Immobilized on Alginate Gel. Biomaterials, Artificial Cells, and Immobilization Biotechnology: Official Journal of the International Society for Artificial Cells and Immobilization Biotechnology, 1993, 21, 675-683.	0.2	1
68	Studies on Rifamycin Oxidase Immobilized on K-Carrageenan Gel. Biomaterials, Artificial Cells, and Immobilization Biotechnology: Official Journal of the International Society for Artificial Cells and Immobilization Biotechnology, 1993, 21, 665-674.	0.2	1
69	Studies on rifamycin oxidase immobilized on agar gel Journal of General and Applied Microbiology, 1993, 39, 251-255.	0.4	0