
Michael P Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1059048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changing Paradigms in Insect Social Evolution: Insights from Halictine and Allodapine Bees. Annual Review of Entomology, 2007, 52, 127-150.	11.8	198
2	Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long-range dispersal over water. Journal of Biogeography, 2005, 32, 2135-2144.	3.0	73
3	A Mid-Cretaceous Origin of Sociality in Xylocopine Bees with Only Two Origins of True Worker Castes Indicates Severe Barriers to Eusociality. PLoS ONE, 2012, 7, e34690.	2.5	68
4	FEMALEâ€BIASED SEX RATIOS IN A FACULTATIVELY SOCIAL BEE AND THEIR IMPLICATIONS FOR SOCIAL EVOLUTION. Evolution; International Journal of Organic Evolution, 1994, 48, 1684-1697.	2.3	52
5	Molecular phylogeny of the small carpenter bees (Hymenoptera: Apidae: Ceratinini) indicates early and rapid global dispersal. Molecular Phylogenetics and Evolution, 2010, 55, 1042-1054.	2.7	52
6	Fitness consequences of ecological constraints and implications for the evolution of sociality in an incipiently social bee. Biological Journal of the Linnean Society, 2011, 103, 57-67.	1.6	39
7	Biogeographical origins and diversification of the exoneurine allodapine bees of Australia (Hymenoptera, Apidae). Journal of Biogeography, 2011, 38, 1471-1483.	3.0	35
8	Repeated origins of social parasitism in allodapine bees indicate that the weak form of Emery's rule is widespread, yet sympatric speciation remains highly problematic. Biological Journal of the Linnean Society, 2013, 109, 320-331.	1.6	32
9	Diversification of Fijian halictine bees: Insights into a recent island radiation. Molecular Phylogenetics and Evolution, 2013, 68, 582-594.	2.7	32
10	Bees in the Southwest Pacific: Origins, diversity and conservation. Apidologie, 2011, 42, 759-770.	2.0	26
11	Brood insurance via protogyny: a source of female-biased sex allocation. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1869-1874.	2.6	25
12	Multiple recent introductions of apid bees into Pacific archipelagos signify potentially large consequences for both agriculture and indigenous ecosystems. Biological Invasions, 2014, 16, 2293-2302.	2.4	23
13	Parallel responses of bees to Pleistocene climate change in three isolated archipelagos of the southwestern Pacific. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133293.	2.6	22
14	Sociality in <1>Amphylaeus morosus 1 (Hymenoptera: Colletidae: Hylaeinae). Annals of the Entomological Society of America, 2000, 93, 684-692.	2.5	18
15	Diversity and Origins of Fijian Leaf-Cutter Bees (Megachilidae). Pacific Science, 2013, 67, 561-570.	0.6	18
16	Review of the bee genus Homalictus Cockerell (Hymenoptera: Halictidae)Âfrom Fiji with description of nine new species. Zootaxa, 2019, 4674, zootaxa.4674.1.1.	0.5	18
17	Plio-Pleistocene diversification and biogeographic barriers in southern Australia reflected in the phylogeography of a widespread and common lizard species. Molecular Phylogenetics and Evolution, 2019, 133, 107-119.	2.7	18
18	Climate change and invasive species: a physiological performance comparison of invasive and endemic bees in Fiji. Journal of Experimental Biology, 2021, 224, .	1.7	17

#	Article	IF	CITATIONS
19	Radiation of tropical island bees and the role of phylogenetic niche conservatism as an important driver of biodiversity. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200045.	2.6	16
20	Kinship in a social bee mediates ovarian differentiation and has implications for reproductive skew theories. Animal Behaviour, 2012, 84, 611-618.	1.9	15
21	Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators. Insect Science, 2015, 22, 532-540.	3.0	15
22	Review of the biology and host associations of the wasp genus Gasteruption (Evanioidea:) Tj ETQq0 0 0 rgBT /Ov	erloçk 10 T 2.3	Tf 50 622 Td 15
23	Strategic exploitation in a socially parasitic bee: a benefit in waiting?. Behavioral Ecology and Sociobiology, 2006, 60, 108-115.	1.4	14
24	â€~Back to <scp>A</scp> frica': increased taxon sampling confirms a problematic <scp>A</scp> ustraliaâ€toâ€ <scp>A</scp> frica bee dispersal event in the <scp>E</scp> ocene. Systematic Entomology, 2017, 42, 724-733.	3.9	14
25	Current status of the introduced allodapine beeBraunsapis puangensis(Hymenoptera: Apidae) in Fiji. Austral Entomology, 2016, 55, 43-48.	1.4	13
26	Holocene population expansion of a tropical bee coincides with early human colonization of Fiji rather than climate change. Molecular Ecology, 2021, 30, 4005-4022.	3.9	11
27	Recipe for disruption: multiple recent arrivals of megachilid bees in Pacific archipelagos. Journal of Insect Conservation, 2014, 18, 613-622.	1.4	10
28	Low endemic bee diversity and very wide host range in lowland Fiji: support for the pollinator super-generalist hypothesis in island biogeography. Pacific Conservation Biology, 2019, 25, 135.	1.0	9
29	Molecular diversity and species delimitation in the family Gasteruptiidae (Hymenoptera: Evanioidea). Genome, 2021, 64, 253-264.	2.0	8
30	First record of Gasteruption Latreille (Hymenoptera: Evanioidea:ÂGasteruptiidae) from Fiji with the description of a new species. Zootaxa, 2018, 4407, 111.	0.5	6
31	Geographic patterns in colonial reproductive strategy in <i>Myrmecina nipponica</i> : Links between biogeography and a key polymorphism in ants. Journal of Evolutionary Biology, 2020, 33, 1192-1202.	1.7	6
32	Extreme host range in an insular bee supports the super-generalist hypothesis with implications for both weed invasion and crop pollination. Arthropod-Plant Interactions, 2021, 15, 13-22.	1.1	6
33	Reproductive ethology of the Fijian predator-inquiline wasp Pseudofoenus extraneus (Hymenoptera:) Tj ETQq1 1 122-129.	0.784314 0.4	rgBT /Overlo 4
34	Casteless behaviour in social groups of the bee Exoneurella eremophila. Apidologie, 2018, 49, 265-275.	2.0	3
35	Description and novel host records for a new species of Australian mutillid wasp (Hymenoptera:) Tj ETQq1 1 0.78	34314 rgBT 1.4	∏/gverlock 1
36	Demographic stability of the Australian temperate exoneurine bees (Hymenoptera: Apidae) through the Last Glacial Maximum. Austral Entomology, 2021, 60, 549-559.	1.4	3

MICHAEL P SCHWARZ

#	Article	IF	CITATIONS
37	Temporal dissonance between group size and its benefits requires whole-of-lifecycle measurements. Behavioral Ecology, 2022, 33, 606-614.	2.2	3
38	Extreme reproductive skew at the dawn of sociality is consistent with inclusive fitness theory but problematic for routes to eusociality. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	3
39	Sex Ratios in a Socially Parasitic Bee and Implications for Host-Parasite Interactions. Journal of Insect Behavior, 2017, 30, 130-137.	0.7	2
40	Parasitoids of the uniquely social colletid bee Amphylaeus morosus (Hymenoptera: Colletidae) in Victoria. Memoirs of Museum Victoria, 0, , 183-191.	0.6	2
41	Phylogeny and divergence estimates for the gasteruptiid wasps (Hymenoptera : Evanioidea) reveals a correlation with hosts. Invertebrate Systematics, 2020, , .	1.3	1
42	Origin and dispersal of Homalictus (Apoidea: Halictidae) across Australia, Papua New Guinea and Pacific. Transactions of the Royal Society of South Australia, 2020, 144, 1-14.	0.4	1
43	Does effective population size affect rates of molecular evolution: Mitochondrial data for host/parasite species pairs in bees suggests not. Ecology and Evolution, 2022, 12, e8562.	1.9	0