Daniel E Lucani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10589533/publications.pdf

Version: 2024-02-01

1307594 1125743 26 368 7 13 citations g-index h-index papers 27 27 27 330 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Revolving Codes: Overhead and Computational Complexity Analysis. IEEE Communications Letters, 2021, 25, 374-378.	4.1	4
2	Reduction of Padding Overhead for RLNC Media Distribution With Variable Size Packets. IEEE Transactions on Broadcasting, 2019, 65, 558-576.	3.2	11
3	Protocols to Reduce CPS Sensor Traffic Using Smart Indexing and Edge Computing Support. , 2019, , .		9
4	Revolving Codes: High Performance and Low Overhead Network Coding., 2019, , .		4
5	Fulcrum: Flexible Network Coding for Heterogeneous Devices. IEEE Access, 2018, 6, 77890-77910.	4.2	44
6	Secure and Scalable Key Value Storage for Managing Big Data in Smart Cities Using Intel SGX., 2018,,.		1
7	Bridging inter-flow and intra-flow network coding in wireless mesh networks: From theory to implementation. Computer Networks, 2018, 145, 1-12.	5.1	8
8	On the Performance of the Cache Coding Protocol. Information (Switzerland), 2018, 9, 62.	2.9	2
9	Throughput, energy and overhead of multicast deviceâ€toâ€device communications with networkâ€coded cooperation. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3011.	3.9	7
10	Random Network Coding over Composite Fields. Lecture Notes in Computer Science, 2017, , 118-127.	1.3	0
11	On Goodput and Energy Measurements of Network Coding Schemes in the Raspberry Pi. Electronics (Switzerland), 2016, 5, 66.	3.1	7
12	Getting Kodo., 2016,,.		2
13	On the Overhead of Telescopic Codes in Network Coded Cooperation., 2015, , .		4
14	Network coding and its applications to satellite systems. , 2015, , 275-302.		0
15	Coded Schemes for Asymmetric Wireless Interfaces: Theory and Practice. IEEE Journal on Selected Areas in Communications, 2015, 33, 171-184.	14.0	6
16	Hardware Abstraction and Protocol Optimization for Coded Sensor Networks. IEEE/ACM Transactions on Networking, 2015, 23, 866-879.	3.8	3
17	Network-Coded Cooperation Over Time-Varying Channels. IEEE Transactions on Communications, 2014, 62, 4413-4425.	7.8	2
18	Network Coding Protocols for Smart Grid Communications. IEEE Transactions on Smart Grid, 2014, 5, 1523-1531.	9.0	32

#	Article	IF	CITATIONS
19	D2D-Based Mobile Clouds for Energy- and Spectral-Efficient Content Distribution. , 2014, , 237-280.		4
20	Foreseen risks for network coding based surveillance applications. , 2013, , .		1
21	Network coding designs suited for the real world: What works, what doesn't, what's promising. , 2013, , .		14
22	Lean and mean: network coding for commercial devices. IEEE Wireless Communications, 2013, 20, 54-61.	9.0	43
23	CORE: COPE with MORE in Wireless Meshed Networks. , 2013, , .		34
24	A total energy approach to protocol design in coded wireless sensor networks. , 2012, , .		3
25	On Coding for Delayâ€"Network Coding for Time-Division Duplexing. IEEE Transactions on Information Theory, 2012, 58, 2330-2348.	2.4	57
26	Random Linear Network Coding for Time-Division Duplexing: Field Size Considerations. , 2009, , .		66