Yujin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10588392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings. Solar Energy Materials and Solar Cells, 2015, 143, 168-173.	6.2	106
2	A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Environmental Research, 2021, 195, 110853.	7.5	56
3	Analysis of walls of functional gypsum board added with porous material and phase change material to improve hygrothermal performance. Energy and Buildings, 2019, 183, 803-816.	6.7	46
4	Hygrothermal performance improvement of the Korean wood frame walls using macro-packed phase change materials (MPPCM). Applied Thermal Engineering, 2017, 114, 457-465.	6.0	45
5	Energy retrofit of PCM-applied apartment buildings considering building orientation and height. Energy, 2021, 222, 119877.	8.8	43
6	Hygrothermal behavior evaluation of walls improving heat and moisture performance on gypsum boards by adding porous materials. Energy and Buildings, 2018, 165, 431-439.	6.7	40
7	Thermal Performance Evaluation of Fatty Acid Ester and Paraffin Based Mixed SSPCMs Using Exfoliated Graphite Nanoplatelets (xGnP). Applied Sciences (Switzerland), 2016, 6, 106.	2.5	25
8	Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance. Science of the Total Environment, 2021, 775, 145552.	8.0	24
9	Development of wood-lime boards as building materials improving thermal and moisture performance based on hygrothermal behavior evaluation. Construction and Building Materials, 2019, 204, 576-585.	7.2	21
10	Development of heat storage gypsum board with paraffin-based mixed SSPCM for application to buildings. Journal of Adhesion Science and Technology, 2017, 31, 297-309.	2.6	20
11	Hazard evaluation of indoor environment based on long-term pollutant emission characteristics of building insulation materials: An empirical study. Environmental Pollution, 2021, 285, 117223.	7.5	19
12	Updated results on the integration of metal–organic framework with functional materials toward n-alkane for latent heat retention and reliability. Journal of Hazardous Materials, 2022, 423, 127147.	12.4	16
13	Three-dimensional hybrid carbon nanocomposite-based intelligent composite phase change material with leakage resistance, low electrical resistivity, and high latent heat. Journal of Industrial and Engineering Chemistry, 2021, 98, 435-443.	5.8	13
14	Evaluation of thermal/acoustic performance to confirm the possibility of coffee waste in building materials in using bio-based microencapsulated PCM. Environmental Pollution, 2022, 294, 118616.	7.5	11
15	Practical solutions with PCM for providing thermal stability of temporary house, school and hospital in disaster situations. Building and Environment, 2022, 207, 108540.	6.9	9
16	Assessment of effect of climate change on hygrothermal performance of cross-laminated timber building envelope with modular construction. Case Studies in Thermal Engineering, 2021, 28, 101703.	5.7	9
17	Building retrofit technology strategy and effectiveness evaluation for reducing energy use by indoor air quality control. Building and Environment, 2022, 216, 108984.	6.9	8
18	Analysis of Hygrothermal Performance of Wood Frame Walls according to Position of Insulation and Climate Conditions. Journal of the Korean Wood Science and Technology, 2016, 44, 264-273.	3.0	7

Yujin Kang

#	Article	IF	CITATIONS
19	Evaluation of The Hygrothermal Performance by Wall Layer Component of Wooden Houses Using WUFI Simulation Program. Journal of the Korean Wood Science and Technology, 2016, 44, 75-84.	3.0	6
20	Comparison of Hygrothermal Performance between Wood and Concrete Wall Structures using Simulation Program. Journal of the Korean Wood Science and Technology, 2016, 44, 283-293.	3.0	5
21	Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea. Journal of the Korean Wood Science and Technology, 2016, 44, 440-448.	3.0	3
22	Verification of particle matter generation due to deterioration of building materials as the cause of indoor fine dust. Journal of Hazardous Materials, 2021, 416, 125920.	12.4	2