
Amir Ahmad Akhavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10588179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change and its effect on the vulnerability to zoonotic cutaneous leishmaniasis in Iran. Transboundary and Emerging Diseases, 2022, 69, 1506-1520.	1.3	19
2	Leishmania spp. infection in Rhombomys opimus and Meriones libycus as main reservoirs of zoonotic cutaneous leishmaniasis in central parts of Iran: Progress and implications in health policy. Acta Tropica, 2022, 226, 106267.	0.9	1
3	Molecular and Biochemical Detection of Insecticide Resistance in the <i>Leishmania</i> Vector, <i>Phlebotomus papatasi</i> (Diptera: Psychodidae) to Dichlorodiphenyltrichloroethane and Pyrethroids, in Central Iran. Journal of Medical Entomology, 2022, 59, 1347-1354.	0.9	2
4	The leishmanicidal effect of Lucilia sericata larval saliva and hemolymph on in vitro Leishmania tropica. Parasites and Vectors, 2021, 14, 40.	1.0	5
5	An Eco-Epidemiological Study on Zoonotic Cutaneous Leishmaniasis in Central Iran. Iranian Journal of Public Health, 2021, 50, 350-359.	0.3	7
6	Comparative Testing of Susceptibility Levels of Phlebotomus sergenti, the Main Vector of Anthroponotic Cutaneous Leishmaniasis, to Conventional Insecticides Using Two Capture Methods in Kerman City, Southeastern Iran. Iranian Journal of Arthropod-borne Diseases, 2021, 15, 82-96.	0.8	3
7	Modelling and evaluating the risk of zoonotic cutaneous leishmaniasis in selected areas of Kerman Province, south of Iran. Transboundary and Emerging Diseases, 2020, 67, 1271-1283.	1.3	7
8	Human immune response to Phlebotomus sergenti salivary gland antigens in a leishmaniasis-endemic focus in Iran. Pathogens and Global Health, 2020, 114, 323-332.	1.0	3
9	Molecular Identification of Leishmania Species in Phlebotomus alexandri (Diptera: Psychodidae) in Western Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 8-16.	0.8	11
10	Monitoring of Laboratory Reared of Phlebotomus papatasi (Diptera: Psychodidae), Main Vector of Zoonotic Cutaneous Leishmaniasis to Different Imagicides in Hyper endemic Areas, Esfahan Province, Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 116-125.	0.8	8
11	Emerging of Cutaneous Leishmaniais due to Leishmania major in a New Focus in Esfahan Province, Central Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 134-143.	0.8	3
12	Epidemiological survey on Cutaneous Leishmaniasis in southwestern Iran. Journal of Vector Borne Diseases, 2020, 57, 121.	0.1	0
13	Epidemiology of Visceral Leishmaniasis with Emphasis on the Dynamic Activity of Sand Flies in an Important Endemic Focus of Disease in Northwestern Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 97-105.	0.8	4
14	Evaluation of Different Attractive Traps for Capturing Sand Flies (Diptera: Psychodidae) in an Endemic Area of Leishmaniasis, Southeast of Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 202-213.	0.8	2
15	Conducting International Diploma Course on Leishmaniasis and Its Control in the Islamic Republic of Iran. Journal of Arthropod-Borne Diseases, 2019, 13, 234-242.	0.9	3
16	Prone Regions of Zoonotic Cutaneous Leishmaniasis in Southwest of Iran: Combination of Hierarchical Decision Model (AHP) and GIS. Journal of Arthropod-Borne Diseases, 2019, 13, 310-323.	0.9	1
17	Comparative Performance of Different Traps for Collection of Phlebotominae Sand Flies and Estimation of Biodiversity Indices in Three Endemic Leishmaniasis Foci in North Khorasan Province, Northeast of Iran. Journal of Arthropod-Borne Diseases, 2019, 13, 399-406.	0.9	2
18	Spatial Distribution of Phlebotomine Sand Flies (Diptera: Psychodidae) as Phlebovirus Vectors in Different Areas of Iran. Journal of Medical Entomology, 2018, 55, 846-854.	0.9	3

#	Article	IF	CITATIONS
10	The Potential Role of Humans in the Transmission Cycle of Leishmania major (Kinetoplastida:) Tj ETQq1 1 0.78431		
19	of Medical Entomology, 2018, 55, 1588-1593.	0.9	7
20	Modeling of Environmental Factors Affecting the Prevalence of Zoonotic and Anthroponotic Cutaneous, and Zoonotic Visceral Leishmaniasis in Foci of Iran: a Remote Sensing and GIS Based Study. Journal of Arthropod-Borne Diseases, 2018, 12, 41-66.	0.9	6
21	Richness and Diversity of Phlebotomine Sand Flies (Diptera: Psychodidae) in North Khorasan Province, Northeast of Iran. Journal of Arthropod-Borne Diseases, 2018, 12, 232-239.	0.9	7
22	Designing and Introducing a New Artificial Feeding Apparatus for Sand Fly Rearing. Journal of Arthropod-Borne Diseases, 2018, 12, 426-431.	0.9	1
23	Predicting the Distribution of <i>Phlebotomus papatasi</i> (Diptera: Psychodidae), the Primary Vector of Zoonotic Cutaneous Leishmaniasis, in Golestan Province of Iran Using Ecological Niche Modeling: Comparison of MaxEnt and GARP Models. Journal of Medical Entomology, 2017, 54, tjw178.	0.9	13
24	Assessing the insecticide susceptibility status of field population of Phlebotomus papatasi (Diptera:) Tj ETQq0 0 0 Iran. Acta Tropica, 2017, 176, 316-322.	rgBT /Ov 0.9	erlock 10 Tf 15
25	Spatial Distribution of Phlebotomine Sand Fly Species (Diptera: Psychodidae) in Qom Province, Central Iran. Journal of Medical Entomology, 2017, 54, 35-43.	0.9	17
26	Control of zoonotic cutaneous leishmaniasis vector, Phlebotomus papatasi, using attractive toxic sugar baits (ATSB). PLoS ONE, 2017, 12, e0173558.	1.1	14
27	Susceptibility status of wild population of Phlebotomus sergenti (Diptera: Psychodidae) to different imagicides in a endemic focus of cutaneous leishmaniasis in northeast of Iran. Journal of Vector Borne Diseases, 2017, 54, 282.	0.1	18
28	Assessing the Ovarian Accessory Glands to Determine the Parity of , Vector of Zoonotic Cutaneous Leishmaniasis, under Laboratory Condition. Journal of Arthropod-Borne Diseases, 2017, 11, 161-165.	0.9	3
29	Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran. Journal of Arthropod-Borne Diseases, 2017, 11, 286-301.	0.9	0
30	Epidemiological Study on Cutaneous Leishmaniasis in an Endemic Area, of Qom Province, Central Iran. Journal of Arthropod-Borne Diseases, 2017, 11, 403-413.	0.9	8
31	Rearing and Biology of , the Main Vector of Anthroponotic Cutaneous Leishmaniasis in Iran. Journal of Arthropod-Borne Diseases, 2017, 11, 504-514.	0.9	2
32	Anti Leishmania activity of Lucilia sericata and Calliphora vicina maggots in laboratory models. Experimental Parasitology, 2016, 170, 59-65.	0.5	25
33	Differential expression profiles of the salivary proteins SP15 and SP44 from Phlebotomus papatasi. Parasites and Vectors, 2016, 9, 357.	1.0	7
34	Risk Mapping and Situational Analysis of Cutaneous Leishmaniasis in an Endemic Area of Central Iran: A GIS-Based Survey. PLoS ONE, 2016, 11, e0161317.	1.1	45
35	Application of Flumethrin Pour-On on Reservoir Dogs and Its Efficacy against Sand Flies in Endemic Focus of Visceral Leishmaniasis, Meshkinshahr, Iran. Journal of Arthropod-Borne Diseases, 2016, 10, 78-86.	0.9	5
36	Seasonal and Physiological Variations of Phlebotomus papatasi Salivary Gland Antigens in Central Iran. Journal of Arthropod-Borne Diseases, 2016, 10, 39-49.	0.9	4

Amir Ahmad Akhavan

#	Article	IF	CITATIONS
37	Therapeutic Effect of Ethanolic Extract against Localized Cutaneous Leishmaniasis Caused by (MRHO/IR/75/ER). Iranian Journal of Public Health, 2016, 45, 1340-1347.	0.3	7
38	Rodenticide Comparative Effect of Klerat® and Zinc Phosphide for Controlling Zoonotic Cutaneous Leishmaniasis in Central Iran. Iranian Journal of Parasitology, 2016, 11, 471-479.	0.6	7
39	Bioassay evaluation of residual activity of attractive toxic sugar-treated barrier fence in the control of (Diptera: Psychodidae). Journal of Vector Borne Diseases, 2016, 53, 335-340.	0.1	3
40	Epidemiological Study on Sand Flies in an Endemic Focus of Cutaneous Leishmaniasis, Bushehr City, Southwestern Iran. Frontiers in Public Health, 2015, 3, 14.	1.3	10
41	Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasites and Vectors, 2015, 8, 63.	1.0	62
42	Species diversity of sand flies and ecological niche model of Phlebotomus papatasi in central Iran. Acta Tropica, 2015, 149, 246-253.	0.9	34
43	Modeling the Distribution of Cutaneous Leishmaniasis Vectors (Psychodidae: Phlebotominae) in Iran: A Potential Transmission in Disease Prone Areas. Journal of Medical Entomology, 2015, 52, 557-565.	0.9	46
44	Endoparasites of Wild Rodents in Southeastern Iran. Journal of Arthropod-Borne Diseases, 2015, 9, 1-6.	0.9	15
45	A survey of reservoir hosts in two foci of cutaneous leishmaniasis in Kerman province, southeast of Iran. Journal of Parasitic Diseases, 2014, 38, 245-249.	0.4	11
46	Diversity of sand flies (Diptera, Psychodidae) in southwest Iran with emphasis on synanthropy of Phlebotomus papatasi and Phlebotomus alexandri. Acta Tropica, 2014, 140, 173-180.	0.9	32
47	Spatial and temporal distributions of phlebotomine sand flies (Diptera: Psychodidae), vectors of leishmaniasis, in Iran. Acta Tropica, 2014, 132, 131-139.	0.9	87
48	Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi. Journal of Arthropod-Borne Diseases, 2014, 8, 69-81.	0.9	20
49	Efficacy of Different Sampling Methods of Sand Flies (Diptera: Psychodidae) in Endemic Focus of Cutaneous Leishmaniasis in Kashan District, Isfahan Province, Iran. Journal of Arthropod-Borne Diseases, 2014, 8, 156-62.	0.9	9
50	Biodiversity of Aquatic Insects of Zayandeh Roud River and Its Branches, Isfahan Province, Iran. Journal of Arthropod-Borne Diseases, 2014, 8, 197-203.	0.9	9
51	Molecular epidemiological study of cutaneous leishmaniasis in the focus of bushehr city, southwestern iran. Journal of Arthropod-Borne Diseases, 2013, 7, 113-21.	0.9	8
52	MtDNA CytB Structure of Rhombomys opimus (Rodentia: Gerbellidae), the Main Reservoir of Cutaneous Leishmaniasis in the Borderline of Iran-Turkmenistan. Journal of Arthropod-Borne Diseases, 2013, 7, 173-84.	0.9	4
53	Laboratory Evaluation of a Rodenticide-insecticide, Coumavec®, against Rhombomys opimus, the Main Reservoir Host of Zoonotic Cutaneouse Leishmaniasis in Iran. Journal of Arthropod-Borne Diseases, 2013, 7, 188-93.	0.9	4
54	Baseline susceptibility of a wild strain of <i>Phlebotomus papatasi</i> (Diptera: Psychodidae) to DDT and pyrethroids in an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Pest Management Science, 2012, 68, 669-675.	1.7	30

#	Article	IF	CITATIONS
55	Mitochondrial DNA diversity in the populations of great gerbils, Rhombomys opimus, the main reservoir of cutaneous leishmaniasis. Acta Tropica, 2011, 119, 165-171.	0.9	19
56	Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs. Experimental Parasitology, 2010, 126, 552-556.	0.5	75
57	Geographical distribution and ecological features of the great gerbil subspecies in the main zoonotic cutaneous leishmaniasis foci in Iran. Asian Pacific Journal of Tropical Medicine, 2010, 3, 800-803.	0.4	20
58	An outbreak of cutaneous leishmaniasis due to Leishmania major in an endemic focus in central Iran. Journal of Parasitic Diseases, 0, , 1.	0.4	0