Richard M Warren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10587538/publications.pdf

Version: 2024-02-01

108 4,943 papers citations

40 h-index 95083 68 g-index

133 all docs

133
docs citations

133 times ranked 1126 citing authors

#	Article	IF	CITATIONS
1	Arrays of rectangular subcritical speech bands: Intelligibility improved by noise-vocoding and expanding to critical bandwidths. Journal of the Acoustical Society of America, 2018, 143, EL305-EL310.	0.5	O
2	Critical bandwidth speech: Arrays of subcritical band speech maintain near-ceiling intelligibility at high amplitudes. Journal of the Acoustical Society of America, 2017, 141, EL222-EL227.	0.5	3
3	Maintaining intelligibility at high intensities with arrays of subcritical width speech bands and interpolated noise. Journal of the Acoustical Society of America, 2017, 142, EL299-EL305.	0.5	O
4	How broadband speech may avoid neural firing rate saturation at high intensities and maintain intelligibility. Journal of the Acoustical Society of America, 2015, 137, EL340-EL346.	0.5	1
5	Arrays of subcritical width rectangular speech bands maintain intelligibility at high intensities. Proceedings of Meetings on Acoustics, 2014, , .	0.3	O
6	Maintaining intelligibility at high speech intensities: Evidence of lateral inhibition in the lower auditory pathway. Journal of the Acoustical Society of America, 2013, 134, EL119-EL125.	0.5	2
7	When intelligibilities of paired speech bands do not behave the way they are supposed to. Journal of the Acoustical Society of America, 2013, 134, EL244-EL250.	0.5	3
8	When spectral smearing can increase speech intelligibility. Proceedings of Meetings on Acoustics, 2013, 19, 60118-60124.	0.3	0
9	How broadband speech may avoid neural firing rate saturation at high intensities and maintain intelligibility. Proceedings of Meetings on Acoustics, 2013, 13, 3426.	0.3	1
10	Enhancing the intelligibility of high-intensity speech: Evidence of inhibition in the lower auditory pathway. Proceedings of Meetings on Acoustics, 2011, 12, .	0.3	4
11	An alternative to the computational Speech Intelligibility Index estimates: Direct measurement of Rectangular Passband Intelligibilities Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 296-302.	0.7	8
12	When noise vocoding can improve the intelligibility of sub-critical band speech Proceedings of Meetings on Acoustics, 2010, 9, 60001-600019.	0.3	1
13	Is intelligibility of adjacent passbands hypoadditive or hyperadditive?. Proceedings of Meetings on Acoustics, 2009, 6, 50002.	0.3	O
14	The spread and density of the phonological neighborhood can strongly influence the verbal transformation illusion. Proceedings of Meetings on Acoustics, 2009, 6, 60002-600028.	0.3	2
15	Synthesizing complex sensations from simple components. Behavioral and Brain Sciences, 2008, 31, 90-91.	0.4	O
16	Evoking biphone neighborhoods with verbal transformations: Illusory changes demonstrate both lexical competition and inhibition. Journal of the Acoustical Society of America, 2008, 123, EL32-EL38.	0.5	8
17	Polling the effective neighborhoods of spoken words with the verbal transformation effect. Journal of the Acoustical Society of America, 2006, 119, EL55-EL59.	0.5	10
18	Intelligibilities of 1-octave rectangular bands spanning the speech spectrum when heard separately and paired. Journal of the Acoustical Society of America, 2005, 118, 3261-3266.	0.5	39

#	Article	IF	Citations
19	Enhancing intelligibility of narrowband speech with out-of-band noise: Evidence for lateral suppression at high-normal intensity. Journal of the Acoustical Society of America, 2005, 117, 365-369.	0.5	9
20	Intelligibility of bandpass filtered speech: Steepness of slopes required to eliminate transition band contributions. Journal of the Acoustical Society of America, 2004, 115, 1292-1295.	0.5	42
21	Intelligibility of dual rectangular speech bands: Implications of observations concerning amplitude mismatch and asynchrony. Speech Communication, 2003, 40, 551-558.	1.6	5
22	The role of contrasting temporal amplitude patterns in the perception of speech. Journal of the Acoustical Society of America, 2003, 113, 1676-1688.	0.5	35
23	Confusion of sensations and their physical correlates. Behavioral and Brain Sciences, 2003, 26, 51-51.	0.4	0
24	Detection of acoustic repetition for very long stochastic patterns. Perception & Psychophysics, 2001, 63, 175-182.	2.3	20
25	Relative contributions of passband and filter skirts to the intelligibility of bandpass speech: Some effects of context and amplitude. Acoustics Research Letters Online: ARLO, 2000, 1, 31-36.	0.7	11
26	Phonemic organization does not occur: Hence no feedback. Behavioral and Brain Sciences, 2000, 23, 350-351.	0.4	5
27	Intelligibility of bandpass speech: Effects of truncation or removal of transition bands. Journal of the Acoustical Society of America, 2000, 108, 1264.	0.5	7
28	Intelligibility of $1/3$ -octave speech: Greater contribution of frequencies outside than inside the nominal passband. Journal of the Acoustical Society of America, 1999, 106, L47-L52.	0.5	22
29	Spectral restoration of speech: Intelligibility is increased by inserting noise in spectral gaps. Perception & Psychophysics, 1997, 59, 275-283.	2.3	39
30	Binaural release from temporal induction. Perception & Psychophysics, 1996, 58, 899-905.	2.3	10
31	Use of speech-modulated noise adds strong "bottom-up―cues for phonemic restoration. Perception & Psychophysics, 1996, 58, 342-350.	2.3	44
32	The vowelâ€sequence illusion: Intrasubject stability and intersubject agreement of syllabic forms. Journal of the Acoustical Society of America, 1996, 100, 2452-2461.	0.5	47
33	Should we continue to study consciousness?. Behavioral and Brain Sciences, 1995, 18, 270-271.	0.4	0
34	Spectral redundancy: Intelligibility of sentences heard through narrow spectral slits. Perception & Psychophysics, 1995, 57, 175-182.	2.3	124
35	Aphasics Can Distinguish Permuted Orders of Phonemes—But Only If Presented Rapidly. Journal of Speech, Language, and Hearing Research, 1995, 38, 473-476.	0.7	3
36	Auditory induction: Reciprocal changes in alternating sounds. Perception & Psychophysics, 1994, 55, 313-322.	2.3	44

#	Article	IF	CITATIONS
37	Spectral fissioning in phonemic transformations. Perception & Psychophysics, 1994, 55, 218-226.	2.3	6
38	When acoustic sequences are not perceptual sequences: The global perception of auditory patterns. Perception & Psychophysics, 1993, 54, 121-126.	2.3	52
39	Ratio Scaling of Psychological Magnitude: In Honor of the Memory of S. S. Stevens. American Journal of Psychology, 1993, 106, 476.	0.5	0
40	Perception of acoustic sequences: global integration versus temporal resolution., 1993,, 37-68.		31
41	Global pattern perception and temporal order judgments. Behavioral and Brain Sciences, 1992, 15, 230-231.	0.4	0
42	Relation of sensory scales to physical scales. Behavioral and Brain Sciences, 1992, 15, 586-587.	0.4	96
43	Increasing the intelligibility of speech through multiple phonemic restorations. Perception & Psychophysics, 1992, 51, 211-217.	2.3	103
44	Melodic and Nonmelodic Sequences of Tones: Effects of Duration on Perception. Music Perception, 1991, 8, 277-289.	0.5	65
45	Phonemic Transformations: Mapping the Illusory Organization of Steady-State Vowel Sequences. Language and Speech, 1991, 34, 109-143.	0.6	7
46	Tweaking the lexicon: Organization of vowel sequences into words. Perception & Psychophysics, 1990, 47, 423-432.	2.3	82
47	Perception of complex tone pairs mistuned from unison. Journal of the Acoustical Society of America, 1989, 86, 116-125.	0.5	0
48	The use of mathematical models in perceptual theory. Behavioral and Brain Sciences, 1989, 12, 776-776.	0.4	0
49	Sensory magnitudes and their physical correlates. Behavioral and Brain Sciences, 1989, 12, 296-297.	0.4	4
50	Broadband repetition pitch: Spectral dominance or pitch averaging?. Journal of the Acoustical Society of America, 1988, 84, 2058-2062.	0.5	10
51	Illusory continuity of tonal and infratonal periodic sounds. Journal of the Acoustical Society of America, 1988, 84, 1338-1342.	0.5	29
52	Illusory continuity of interrupted speech: Speech rate determines durational limits. Journal of the Acoustical Society of America, 1988, 84, 1635-1638.	0.5	31
53	Perceptual bases for the evolution of speech. , 1988, , 101-110.		4
54	Multiple phonemic restorations follow the rules for auditory induction. Perception & Psychophysics, 1987, 42, 114-121.	2.3	55

#	Article	IF	CITATIONS
55	Effects of listening to repeated syllables: category boundary shifts versus verbal transformations. Journal of Phonetics, 1987, 15, 169-181.	0.6	15
56	Effects of spectral alternation on the intelligibility of words and sentences. Perception & Psychophysics, 1987, 42, 431-438.	2.3	19
57	Criterion shift rule and perceptual homeostasis Psychological Review, 1985, 92, 574-584.	2.7	99
58	Helmholtz and His Continuing Influence. Music Perception, 1984, 1, 253-275.	0.5	3
59	Perceptual restoration of obliterated sounds Psychological Bulletin, 1984, 96, 371-383.	5.5	87
60	The calibration of sensory scales. Behavioral and Brain Sciences, 1983, 6, 319-320.	0.4	1
61	Multiple Meanings of "Phoneme―(Articulatory, Acoustic, Perceptual, Graphemic) and Their Confusions. Speech and Language: Advances in Basic Research and Practice, 1983, 9, 285-311.	0.1	3
62	Measurement of sensory intensity. Behavioral and Brain Sciences, 1981, 4, 175-189.	0.4	199
63	Sensation magnitude judgments are based upon estimates of physical magnitudes. Behavioral and Brain Sciences, 1981, 4, 213-223.	0.4	35
64	Perception of acoustic iterance: Pitch and infrapitch. Perception & Psychophysics, 1981, 29, 395-402.	2.3	37
65	Perceptual transformations in vision and hearing. International Journal of Man-Machine Studies, 1981, 14, 123-132.	0.7	6
66	Stimuli producing conflicting temporal and spectral cues to frequency. Journal of the Acoustical Society of America, 1981, 70, 1020-1024.	0.5	12
67	Detection of long interaural delays for broadband noise. Journal of the Acoustical Society of America, 1981, 69, 1510-1514.	0.5	5
68	Infrapitch echo. Journal of the Acoustical Society of America, 1980, 68, 1301-1305.	0.5	7
69	From neurophysiology to perception. Behavioral and Brain Sciences, 1979, 2, 288-288.	0.4	30
70	Production of white tone from white noise and voiced speech from whisper. Bulletin of the Psychonomic Society, 1978, 11, 327-329.	0.2	5
71	$M\tilde{A}V$ ller-Lyer Illusions: Their Origin in Processes Facilitating Object Recognition. Perception, 1977, 6, 615-626.	0.5	43
72	Auditory Illusions and Perceptual Processes. , 1976, , 389-417.		26

#	Article	IF	CITATIONS
73	Dichotic verbal transformations and evidence of separate processors for identical stimuli. Nature, 1976, 259, 475-477.	13.7	10
74	Auditory contralateral induction: An early stage in binaural processing. Perception & Psychophysics, 1976, 20, 380-386.	2.3	30
75	AUDITORY PERCEPTION AND SPEECH EVOLUTION. Annals of the New York Academy of Sciences, 1976, 280, 708-717.	1.8	9
76	Temporal discrimination of recycled tonal sequences: Pattern matching and naming of order by untrained listeners. Perception & Psychophysics, 1975, 18, 273-280.	2.3	27
77	Auditory pattern recognition by untrained listeners. Perception & Psychophysics, 1974, 15, 495-500.	2.3	59
78	Phonemic restorations based on subsequent context. Perception & Psychophysics, 1974, 16, 150-156.	2.3	192
79	Auditory temporal discrimination by trained listeners. Cognitive Psychology, 1974, 6, 237-256.	0.9	99
80	Relation of the verbal transformation and the phonemic restoration effects. Cognitive Psychology, 1973, 5, 97-107.	0.9	16
81	Anomalous loudness function for speech. Journal of the Acoustical Society of America, 1973, 54, 390-396.	0.5	75
82	Quantification of Loudness. American Journal of Psychology, 1973, 86, 807.	0.5	79
83	Identification of temporal order within auditory sequences. Perception & Psychophysics, 1972, 12, 86-90.	2.3	138
84	Identification times for phonemic components of graded complexity and for spelling of speech. Perception & Psychophysics, 1971, 9, 345-349.	2.3	50
85	Speech perception and phonemic restorations. Perception & Psychophysics, 1971, 9, 358-362.	2.3	168
86	Auditory Illusions and Confusions. Scientific American, 1970, 223, 30-37.	1.0	315
87	Elimination of Biases in Loudness Judgments for Tones. Journal of the Acoustical Society of America, 1970, 48, 1397-1403.	0.5	95
88	Inhibition of the Sweet Taste by Gymnema sylvestre. Nature, 1969, 223, 94-95.	13.7	39
89	Visual intensity judgments: An empirical rule and a theory Psychological Review, 1969, 76, 16-30.	2.7	165
90	Verbal transformation effect and auditory perceptual mechanisms Psychological Bulletin, 1968, 70, 261-270.	5.5	126

#	Article	lF	CITATIONS
91	Quantitative judgments of color: The square root rule. Perception & Psychophysics, 1967, 2, 448-452.	2.3	36
92	A comparison of speech perception in childhood, maturity, and old age by means of the verbal transformation effect. Journal of Verbal Learning and Verbal Behavior, 1966, 5, 142-146.	3.8	46
93	Lightness of grays: Effects of Background reflectance. Perception & Psychophysics, 1966, 1, 145-148.	2.3	72
94	Prior context and fractional versus multiple estimates of the reflectance of Grays against a fixed standard Journal of Experimental Psychology, 1965, 69, 496-502.	1.5	40
95	Lightness of Gray in the Presence of White. Perceptual and Motor Skills, 1965, 21, 925-926.	0.6	32
96	Are Loudness Judgments Based on Distance Estimates?. Journal of the Acoustical Society of America, 1963, 35, 613-614.	0.5	9
97	A Critique of S. S. Stevens' "New Psychophysics― Perceptual and Motor Skills, 1963, 16, 797-810.	0.6	65
98	Are 'Autophonic' Judgments Based on Loudness?. American Journal of Psychology, 1962, 75, 452.	0.5	72
99	Ratio- and Partition-Judgments. American Journal of Psychology, 1962, 75, 109.	0.5	39
100	ILLUSORY CHANGES OF DISTINCT SPEECH UPON REPETITION—THE VERBAL TRANSFORMATION EFFECT. British Journal of Psychology, 1961, 52, 249-258.	1.2	96
101	Illusory Changes in Repeated Words: Differences between Young Adults and the Aged. American Journal of Psychology, 1961, 74, 506.	0.5	44
102	Basis for Lightness-Judgments of Grays. American Journal of Psychology, 1960, 73, 380.	0.5	72
103	Suppression of sweet sensitivity by potassium gymnemate. Journal of Applied Physiology, 1959, 14, 40-42.	1.2	104
104	Basis for Judgments of Relative Brightness*. Journal of the Optical Society of America, 1958, 48, 445.	1.2	122
105	A Basis for Loudness-Judgments. American Journal of Psychology, 1958, 71, 700.	0.5	117
106	An Auditory Analogue of the Visual Reversible Figure. American Journal of Psychology, 1958, 71, 612.	0.5	178
107	A Basis for Judgments of Sensory Intensity. American Journal of Psychology, 1958, 71, 675.	0.5	136
108	Effect of the Relative Volume of Standard and Comparison-Object on Half-Heaviness Judgments. American Journal of Psychology, 1956, 69, 640.	0.5	109