Lidia De Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058672/publications.pdf

Version: 2024-02-01

147801 155660 3,245 76 31 55 h-index citations g-index papers 106 106 106 3701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beckmann Rearrangement of Oximes under Very Mild Conditions. Journal of Organic Chemistry, 2002, 67, 6272-6274.	3.2	228
2	A Very Mild and Chemoselective Oxidation of Alcohols to Carbonyl Compounds. Organic Letters, 2001, 3, 3041-3043.	4.6	213
3	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	11.2	188
4	Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Current Medicinal Chemistry, 2006, 13, 1-23.	2.4	178
5	Trichloroisocyanuric/TEMPO Oxidation of Alcohols under Mild Conditions:Â A Close Investigation. Journal of Organic Chemistry, 2003, 68, 4999-5001.	3.2	137
6	An Easy and Convenient Synthesis of Weinreb Amides and Hydroxamates. Journal of Organic Chemistry, 2001, 66, 2534-2537.	3.2	122
7	An Efficient Route to Alkyl Chlorides from Alcohols Using the Complex TCT/DMF. Organic Letters, 2002, 4, 553-555.	4.6	119
8	Some Recent Approaches to the Synthesis of 2-Substituted Benzofurans. Current Medicinal Chemistry, 2009, 16, 1-20.	2.4	108
9	One-Pot Synthesis of Amides from Aldehydes and Amines <i>via</i> C–H Bond Activation. Organic Letters, 2012, 14, 5014-5017.	4.6	106
10	A Mild and Efficient Alternative to the Classical Swern Oxidation. Journal of Organic Chemistry, 2001, 66, 7907-7909.	3.2	99
11	[1,3,5]-Triazine: A Versatile Heterocycle in Current Applications of Organic Chemistry. Current Organic Chemistry, 2004, 8, 1497-1519.	1.6	99
12	Formic Acid: A Promising Bioâ€Renewable Feedstock for Fine Chemicals. Advanced Synthesis and Catalysis, 2012, 354, 3180-3186.	4.3	84
13	From Alcohols to Indoles: A Tandem Ru Catalyzed Hydrogen-Transfer Fischer Indole Synthesis. Organic Letters, 2012, 14, 6112-6115.	4.6	75
14	Iron-catalysed oxidative amidation of alcohols with amines. Organic and Biomolecular Chemistry, 2013, 11, 3803.	2.8	72
15	Cellulose Beads:  a New Versatile Solid Support for Microwave- Assisted Synthesis. Preparation of Pyrazole and Isoxazole Libraries. ACS Combinatorial Science, 2003, 5, 465-471.	3.3	70
16	An Easy Microwave-Assisted Synthesis of Sulfonamides Directly from Sulfonic Acids. Journal of Organic Chemistry, 2008, 73, 3967-3969.	3.2	66
17	A Simple Preparation of Ketones.N-Protected α-Amino Ketones from α-Amino Acids. Organic Letters, 2001, 3, 1519-1521.	4.6	61
18	An Insight of the Reactions of Amines with Trichloroisocyanuric Acid. Synlett, 2004, 2004, 2180-2184.	1.8	60

#	Article	IF	CITATIONS
19	Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA. Organic Letters, 2015, 17, 3666-3669.	4.6	59
20	A method for generating nitrile oxides from nitroalkanes: a microwave assisted route for isoxazoles. Tetrahedron, 2003, 59, 5437-5440.	1.9	52
21	Trichloroisocyanuric Acid: a Versatile and Efficient Chlorinating and Oxidizing Reagent. European Journal of Organic Chemistry, 2019, 2019, 3544-3552.	2.4	50
22	Iron atalyzed Amidation of Aldehydes with <i>N</i> hloroamines. Advanced Synthesis and Catalysis, 2012, 354, 2949-2953.	4.3	46
23	Mild and Highly Selective Formyl Protection of Primary Hydroxyl Groups. Journal of Organic Chemistry, 2002, 67, 5152-5155.	3.2	44
24	Microwaveâ€Promoted Selective Monoâ€Nâ€Alkylation of Anilines with Tertiary Amines by Heterogeneous Catalysis. Chemistry - A European Journal, 2011, 17, 82-85.	3.3	42
25	Recent developments in oxidative esterification and amidation of aldehydes. Tetrahedron Letters, 2016, 57, 3433-3440.	1.4	42
26	A "Catch and Release―Strategy for the Parallel Synthesis of 2,4,5-Trisubstituted Pyrimidines. ACS Combinatorial Science, 2004, 6, 105-111.	3.3	38
27	A Facile Approach to the Synthesis of Chiral 2-Substituted Benzofurans. Journal of Organic Chemistry, 2007, 72, 3955-3957.	3.2	38
28	Synthesis of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes Based on a One-Pot Phase-Switch Dehydrogenative Cross-Coupling of Primary Alcohols. Organic Letters, 2014, 16, 2586-2589.	4.6	38
29	A New Supported Reagent for the Photochemical Generation of Radicals in Solution. Organic Letters, 2001, 3, 855-857.	4.6	37
30	Solid-Phase Synthesis of Isoxazole-Based Amino Acids:  A New Scaffold for Molecular Diversity. Journal of Organic Chemistry, 2001, 66, 6823-6825.	3.2	35
31	Microwaveâ€Assisted Synthesis of Polysubstituted Benzimidazoles by Heterogeneous Pdâ€Catalyzed Oxidative C–H Activation of Tertiary Amines. European Journal of Organic Chemistry, 2011, 2011, 5791-5795.	2.4	35
32	The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114.	6.7	35
33	Metalâ€Free Oxidative Cross Esterification of Alcohols <i>via</i> Acyl Chloride Formation. Advanced Synthesis and Catalysis, 2016, 358, 154-158.	4.3	32
34	A copper-catalysed amidation of aldehydes via N-hydroxysuccinimide ester formation. Organic and Biomolecular Chemistry, 2013, 11, 8241.	2.8	28
35	A Straightforward Route to Piloty's Acid Derivatives: A Class of Potential Nitroxyl-Generating Prodrugs. Synlett, 2009, 2009, 2149-2153.	1.8	26
36	Synthesis of Substituted Benzofurans via Microwave-Enhanced Catch and Release Strategy. ACS Combinatorial Science, 2008, 10, 517-520.	3.3	25

#	Article	IF	CITATIONS
37	An Environmentally Sustainable Mechanochemical Route to Hydroxamic Acid Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 3135-3144.	4.3	25
38	Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. New Journal of Chemistry, 2019, 43, 10711-10715.	2.8	25
39	Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations. Beilstein Journal of Organic Chemistry, 2017, 13, 2049-2055.	2.2	24
40	Synthesis of 1-Alkyl-4-imidazolecarboxylates:Â A Catch and Release Strategy. ACS Combinatorial Science, 2005, 7, 905-908.	3.3	23
41	A Mechanochemicalâ€Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles. European Journal of Organic Chemistry, 2017, 2017, 5519-5526.	2.4	23
42	A fast and efficient one-pot microwave assisted synthesis of variously di-substituted 1,2,4-oxadiazoles. Organic and Biomolecular Chemistry, 2011, 9, 7539.	2.8	22
43	New pyrazole containing bicarboxylic \hat{l} ±-amino acids: mimics of the cis amide bond. Tetrahedron Letters, 1999, 40, 8701-8704.	1.4	19
44	Palladiumâ€Catalysed Dehydrogenative Generation of Imines from Amines. A Natureâ€Inspired Route to Indoles <i>via</i> Crossâ€Couplings of Amines with Arylhydrazines. Advanced Synthesis and Catalysis, 2013, 355, 3002-3013.	4.3	19
45	Visible-Light Photoredox-Catalyzed Amidation of Benzylic Alcohols. Journal of Organic Chemistry, 2020, 85, 11679-11687.	3.2	19
46	Metalâ€Free Preparation of αâ€Hâ€Chlorinated Alkylaromatic Hydrocarbons by Sunlight. ChemistrySelect, 2018, 3, 7991-7995.	1.5	18
47	A Mild and Inexpensive Procedure for the Synthesis of N,N′-Di-Boc-Protected Guanidines. Synlett, 2009, 2009, 3368-3372.	1.8	17
48	Microwave-Assisted Synthesis of N-Monosubstituted Urea Derivatives. Synlett, 2010, 2010, 2439-2442.	1.8	17
49	Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Organic Chemistry Frontiers, 2018, 5, 531-538.	4.5	17
50	Oneâ€Pot Synthesis of Hydroxamic Acids from Aldehydes and Hydroxylamine. Advanced Synthesis and Catalysis, 2014, 356, 2709-2713.	4.3	16
51	A Mild and Efficient Synthesis of Substituted Quinolines <i>via</i> a Crossâ€Dehydrogenative Coupling of (Bio)available Alcohols and Aminoarenes. Advanced Synthesis and Catalysis, 2015, 357, 576-582.	4.3	16
52	Metal-free mechanochemical oxidations in Ertalyte (sup) \hat{A}^{\otimes} (sup) jars. Beilstein Journal of Organic Chemistry, 2019, 15, 1786-1794.	2.2	16
53	Anhydrides from aldehydes or alcohols via oxidative cross-coupling. New Journal of Chemistry, 2017, 41, 931-939.	2.8	14
54	New Pentamidine Analogues in Medicinal Chemistry. Current Medicinal Chemistry, 2012, 19, 5819-5836.	2.4	13

#	Article	IF	CITATIONS
55	A telescopic one-pot synthesis of \hat{l}^2 -lactam rings using amines as a convenient source of imines. RSC Advances, 2016, 6, 38553-38557.	3.6	13
56	Synthesis of Optically Active α-Amino Acids Containing Pyrazolyl Ring as Substituent. Synthesis, 2000, 2000, 1295-1298.	2.3	12
57	From Lossen Transposition to Solventless "Medicinal Mechanochemistry― ACS Sustainable Chemistry and Engineering, 0, , .	6.7	12
58	A Simple Protocol for Efficient N-Chlorination of Amides and Carbamates. Synlett, 2005, 2005, 223-226.	1.8	11
59	A two-step tandem reaction to prepare hydroxamic acids directly from alcohols. Organic and Biomolecular Chemistry, 2014, 12, 4582.	2.8	10
60	A New, Simple Procedure for the Synthesis of Formyl Amides. Synlett, 2004, 2004, 2570-2572.	1.8	9
61	Preparation of pyrazole and isoxazole libraries on cellulose beads: a new cheap and versatile biopolymer. Comptes Rendus Chimie, 2003, 6, 607-611.	0.5	8
62	A Mild Procedure for the Preparation of 3-Aryl-4-formylpyrazoles. Synlett, 2004, 2004, 2299-2302.	1.8	8
63	"Quick and click―assembly of functionalised indole rings via metal-promoted cyclative tandem reactions. RSC Advances, 2014, 4, 59297-59301.	3.6	6
64	Metal-free oxidative self-coupling of aldehydes or alcohols to symmetric carboxylic anhydrides. Tetrahedron Letters, 2017, 58, 2533-2536.	1.4	5
65	Synthesis of Nitric Oxide Donors Derived from Piloty's Acid and Study of Their Effects on Dopamine Secretion from PC12 Cells. Pharmaceuticals, 2017, 10, 74.	3.8	5
66	Diels–Alder Cycloaddition of Tetraphenylcyclopentadienone and 1,3,5â€Hexatriynes. European Journal of Organic Chemistry, 2016, 2016, 2274-2283.	2.4	4
67	Ammonium Salts Catalyzed Acetalization Reactions in Green Ethereal Solvents. Catalysts, 2020, 10, 1108.	3.5	4
68	Nenitzescu Synthesis of 5â€Hydroxyindoles with Zinc, Iron and Magnesium Salts in Cyclopentyl Methyl Ether. European Journal of Organic Chemistry, 2021, 2021, 5835.	2.4	3
69	A Chemoselective, Easy Bromination of (Hydroxymethyl)phenols. Synthesis, 2008, 2008, 3937-3940.	2.3	2
70	Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection. ACS Omega, 2022, 7, 5670-5678.	3.5	2
71	Mild and Highly Selective Formyl Protection of Primary Hydroxyl Groups ChemInform, 2003, 34, no.	0.0	0
72	Beckmann Rearrangement of Oximes under Very Mild Conditions ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
73	Trichloroisocyanuric Acid/TEMPO Oxidation of Alcohols under Mild Conditions: A Close Investigation ChemInform, 2003, 34, no.	0.0	O
74	A Method for Generating Nitrile Oxides from Nitroalkanes: A Microwave Assisted Route for Isoxazoles ChemInform, 2003, 34, no.	0.0	0
75	An Insight of the Reactions of Amines with Trichloroisocyanuric Acid ChemInform, 2005, 36, no.	0.0	O
76	Front Cover: A Mechanochemical-Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles (Eur. J. Org. Chem. 37/2017). European Journal of Organic Chemistry, 2017, 2017, 5421-5421.	2.4	0