
Dennes T Bergado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10585588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 1042-1050.	3.0	294
2	Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 2006, 18, 161-174.	2.9	195
3	Prefabricated vertical drains (PVDs) in soft Bangkok clay: a case study of the new Bangkok International Airport project. Canadian Geotechnical Journal, 2002, 39, 304-315.	2.8	192
4	Strength and deformation characteristics of shredded rubber tire — sand mixtures. Canadian Geotechnical Journal, 2003, 40, 254-264.	2.8	184
5	Simple Method of Modeling PVD-Improved Subsoil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 965-972.	3.0	160
6	Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Engineering Geology, 2007, 89, 144-154.	6.3	153
7	Smear Effects of Vertical Drains on Soft Bangkok Clay. Journal of Geotechcnical Engineering, 1991, 117, 1509-1530.	0.4	152
8	2D and 3D numerical simulations of reinforced embankments on soft ground. Geotextiles and Geomembranes, 2008, 26, 39-55.	4.6	125
9	Effect of Temperature on Shear Strength and Yielding Behavior of Soft Bangkok Clay. Soils and Foundations, 2007, 47, 423-436.	3.1	92
10	Pullout force/displacement relationship of extensible grid reinforcements. Geotextiles and Geomembranes, 1994, 13, 295-316.	4.6	70
11	Thermal conductivity of soft Bangkok clay from laboratory and field measurements. Engineering Geology, 2009, 105, 211-219.	6.3	65
12	New consolidation equation for soil–cement pile improved ground. Canadian Geotechnical Journal, 2003, 40, 265-275.	2.8	56
13	A case study of geotextile-reinforced embankment on soft ground. Geotextiles and Geomembranes, 2002, 20, 343-365.	4.6	52
14	Field behaviour of stiffened deep cement mixing piles. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2011, 164, 33-49.	1.0	52
15	PVD improvement of soft Bangkok clay with and without vacuum preloading using analytical and numerical analyses. Geotextiles and Geomembranes, 2015, 43, 547-557.	4.6	49
16	Parameters affecting the lateral movements of compound deep cement mixing walls by numerical simulations and parametric analyses. Acta Geotechnica, 2015, 10, 797-812.	5.7	48
17	Comparative flexural performance of compacted cement-fiber-sand. Geotextiles and Geomembranes, 2018, 46, 414-425.	4.6	43
18	Numerical analysis of reinforced wall using rubber tire chips–sand mixtures as backfill material. Computers and Geotechnics, 2004, 31, 103-114.	4.7	42

Dennes T Bergado

#	Article	IF	CITATIONS
19	Full-Scale Embankment Consolidation Test using Prefabricated Vertical Thermal Drains. Soils and Foundations, 2010, 50, 599-608.	3.1	40
20	Settlements of Bangnaâ€Bangpakong Highway on Soft Bangkok Clay. Journal of Geotechcnical Engineering, 1990, 116, 136-155.	0.4	39
21	Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: case study and 3D simulation. Acta Geotechnica, 2019, 14, 225-246.	5.7	39
22	Prediction of Pullout Resistance and Pullout Force-Displacement Relationship for Inextensible Grid Reinforcements. Soils and Foundations, 1996, 36, 11-22.	3.1	38
23	Mineralogy and Chemistry, and Their Correlation with the Geotechnical Index Properties of Bangkok Clay: Comparison with Ariake Clay. Soils and Foundations, 2000, 40, 11-21.	3.1	37
24	Guest Editorial for the Special Issue on "Soft Ground Improvement― International Journal of Geosynthetics and Ground Engineering, 2021, 7, 1.	2.0	35
25	Stochastic Analysis of Pore Pressure Uncertainty for the Probabilistic Assessment of the Safety of Earth Slopes. Soils and Foundations, 1985, 25, 87-105.	3.1	34
26	Inverse Analysis of Geotechnical Parameters on Improved Soft Bangkok Clay. Journal of Geotechcnical Engineering, 1992, 118, 1012-1030.	0.4	32
27	Design curves of prefabricated vertical drains including smear and transition zones effects. Geotextiles and Geomembranes, 2012, 32, 1-9.	4.6	31
28	Performance of Reinforced Embankment on Muar Clay Deposit. Soils and Foundations, 1993, 33, 1-17.	3.1	30
29	Modelling prefabricated vertical drain improved ground in plane strain analysis. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2013, 166, 65-77.	1.0	25
30	A simple solution for prefabricated vertical drain with surcharge preloading combined with vacuum consolidation. Geotextiles and Geomembranes, 2021, 49, 304-322.	4.6	22
31	ROOT STRENGTH MEASUREMENTS OF VETIVER AND RUZI GRASSES. Lowland Technology International, 2014, 16, 71-80.	0.3	21
32	Case study and numerical simulation of PVD improved soft Bangkok clay with surcharge and vacuum preloading using a modified air-water separation system. Geotextiles and Geomembranes, 2022, 50, 137-153.	4.6	21
33	Numerical assessment of equivalent diameter equations for prefabricated vertical drains. Canadian Geotechnical Journal, 2012, 49, 1427-1433.	2.8	19
34	Comparative performances of two- and three-dimensional analyses of soil-cement mixing columns under an embankment load. Marine Georesources and Geotechnology, 2019, 37, 852-869.	2.1	18
35	Deformation of Reinforced Soil Wall-Embankment System on Soft Clay Foundation. Soils and Foundations, 1997, 37, 33-46.	3.1	16
36	Reliability-based analysis of embankment on soft Bangkok clay. Structural Safety, 1994, 13, 247-266.	5.3	14

Dennes T Bergado

#	Article	IF	CITATIONS
37	Microstructures within and outside the smear zones for soft clay improvement using PVD only, Vacuum-PVD, Thermo-PVD and Thermo-Vacuum-PVD. Geotextiles and Geomembranes, 2020, 48, 828-843.	4.6	14
38	Performance-based design optimization of embankments resting on soft soil improved with T-shaped and conventional DCM columns. Acta Geotechnica, 2021, 16, 3301-3326.	5.7	12
39	Characterization of Stationary and Nonstationary Random Fields with Different Copulas on Undrained Shear Strength of Soils: Probabilistic Analysis of Embankment Stability on Soft Ground. International Journal of Geomechanics, 2022, 22, .	2.7	11
40	Vacuum-PVD Improvement: a Case Study of the Second Improvement of Soft Bangkok Clay on the Subsiding Ground. International Journal of Geosynthetics and Ground Engineering, 2021, 7, 1.	2.0	8
41	The use of polymeric and metallic geogrid on a full-scale MSE wall/embankment on hard foundation: a comparison of field data with simulation. International Journal of Geo-Engineering, 2016, 7, 1.	2.1	7
42	Embankment reinforced with limited life geotextiles on soft clay. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2015, 168, 130-143.	1.0	6
43	Analytical and numerical modeling of pullout capacity and interaction between hexagonal wire mesh and silty sand backfill under an in-soil pullout test. Canadian Geotechnical Journal, 2003, 40, 886-899.	2.8	5
44	Full-Scale Tests on Stiffened Deep Cement Mixing Piles Including Three-Dimensional Finite Element Simulation. , 2015, , 31-77.		5
45	Observation of Static Load of L-Shaped Retaining Wall Constructed on Short Wooden Pile Using Fiber Optic Geogrid BOTDR Method. Indian Geotechnical Journal, 2016, 46, 398-407.	1.4	5
46	Analyses of reinforced embankment on soft and hard foundations. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2014, 167, 3-23.	1.0	2
47	Yielding of Saturated Clays at Elevated Temperatures. , 2008, , .		Ο
48	Editorial: Challenges and opportunities. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 185-186.	1.0	0
49	Reply to the discussion by Wu and Hu on "Numerical assessment of equivalent diameter equations for prefabricated vertical drains― Canadian Geotechnical Journal, 2013, 50, 805-805.	2.8	0
50	Recent Developments of PVD Soft Ground Improvement: Laboratory Test Results and Simulations. Geotechnical, Geological and Earthquake Engineering, 2013, , 297-320.	0.2	0