Jose Antonio Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seed Science Research: Global Trends in Seed Biology and Technology. Seeds, 2022, 1, 1-4.	0.7	4
2	Hydrogen Peroxide Imbibition Following Cold Stratification Promotes Seed Germination Rate and Uniformity in Peach cv. GF305. Seeds, 2022, 1, 28-35.	0.7	0
3	Potassium Nitrate Treatment Is Associated with Modulation of Seed Water Uptake, Antioxidative Metabolism and Phytohormone Levels of Pea Seedlings. Seeds, 2022, 1, 5-15.	0.7	14
4	Acetylsalicylic acid improved antioxidative status and cold storage of encapsulated nodal segments of neem (Azadirachta indica A. Juss.). Plant Cell, Tissue and Organ Culture, 2021, 144, 261-270.	1.2	8
5	Substrate composition affects the development of water stress and subsequent recovery by inducing physiological changes in Cistus albidus plants. Plant Physiology and Biochemistry, 2021, 158, 125-135.	2.8	6
6	Nanoencapsulation of Pomegranate Extract to Increase Stability and Potential Dermatological Protection. Pharmaceutics, 2021, 13, 271.	2.0	10
7	Interplay among Antioxidant System, Hormone Profile and Carbohydrate Metabolism during Bud Dormancy Breaking in a High-Chill Peach Variety. Antioxidants, 2021, 10, 560.	2.2	19
8	Physiological and biochemical characterization of bud dormancy: Evolution of carbohydrate and antioxidant metabolisms and hormonal profile in a low chill peach variety. Scientia Horticulturae, 2021, 281, 109957.	1.7	26
9	Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis). Applied Sciences (Switzerland), 2021, 11, 6346.	1.3	6
10	Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environmental and Experimental Botany, 2021, 191, 104601.	2.0	18
11	Where biotic and abiotic stress responses converge: Common patterns in response to salinity and Plum pox virus infection in pea and peach plants. Annals of Applied Biology, 2021, 178, 281-292.	1.3	1
12	Molecular characterization using SSR markers and biochemical analysis of Moroccan and Spanish argan [Argania spinosa (L.) Skeels] ecotypes under water stress and rewatering. Biologia (Poland), 2021, 76, 799-808.	0.8	2
13	H2O2-Elicitation of Black Carrot Hairy Roots Induces a Controlled Oxidative Burst Leading to Increased Anthocyanin Production. Plants, 2021, 10, 2753.	1.6	5
14	Biochemical study of the effect of stress conditions on the mandelonitrileâ€associated salicylic acid biosynthesis in peach. Plant Biology, 2020, 22, 277-286.	1.8	12
15	Impacts of LEDs in the Red Spectrum on the Germination, Early Seedling Growth and Antioxidant Metabolism of Pea (Pisum sativum L.) and Melon (Cucumis melo L.). Agriculture (Switzerland), 2020, 10, 204.	1.4	10
16	Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. Agronomy, 2020, 10, 194.	1.3	41
17	The Apoplastic and Symplastic Antioxidant System in Onion: Response to Long-Term Salt Stress. Antioxidants, 2020, 9, 67.	2.2	16
18	UV-B Exposure of Black Carrot (Daucus carota ssp. sativus var. atrorubens) Plants Promotes Growth, Accumulation of Anthocyanin, and Phenolic Compounds. Agronomy, 2019, 9, 323.	1.3	10

#	Article	IF	CITATIONS
19	Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific class III peroxidase gene. Tree Genetics and Genomes, 2019, 15, 1.	0.6	14
20	The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. Plant Journal, 2019, 99, 1031-1046.	2.8	60
21	Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 2019, 20, 2408.	1.8	119
22	The use of reclaimed water is a viable and safe strategy for the irrigation of myrtle plants in a scenario of climate change. Water Science and Technology: Water Supply, 2019, 19, 1741-1747.	1.0	2
23	Antioxidant Metabolism and Chlorophyll Fluorescence during the Acclimatisation to Ex Vitro Conditions of Micropropagated Stevia rebaudiana Bertoni Plants. Antioxidants, 2019, 8, 615.	2.2	15
24	A new prognostic model identifies patients aged 80 years and older with diffuse large B ell lymphoma who may benefit from curative treatment: A multicenter, retrospective analysis by the Spanish GELTAMO group. American Journal of Hematology, 2018, 93, 867-873.	2.0	16
25	Mycorrhizal inoculation on compost substrate affects nutritional balance, water uptake and photosynthetic efficiency in Cistus albidus plants submitted to water stress. Revista Brasileira De Botanica, 2018, 41, 299-310.	0.5	21
26	The Salt-Stress Response of the Transgenic Plum Line J8-1 and Its Interaction with the Salicylic Acid Biosynthetic Pathway from Mandelonitrile. International Journal of Molecular Sciences, 2018, 19, 3519.	1.8	11
27	The effect of mandelonitrile, a recently described salicylic acid precursor, on peach plant response against abiotic and biotic stresses. Plant Biology, 2018, 20, 986-994.	1.8	11
28	Nitrate- and nitric oxide-induced plant growth in pea seedlings is linked to antioxidative metabolism and the ABA/GA balance. Journal of Plant Physiology, 2018, 230, 13-20.	1.6	23
29	Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiology and Biochemistry, 2017, 115, 484-496.	2.8	68
30	The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water. Plant Physiology and Biochemistry, 2017, 111, 244-256.	2.8	45
31	ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. International Journal of Medical Microbiology, 2017, 307, 241-248.	1.5	36
32	Plant Responses to Salinity Through an Antioxidative Metabolism and Proteomic Point of View. , 2017, , 173-200.		6
33	Metabolomics and Biochemical Approaches Link Salicylic Acid Biosynthesis to Cyanogenesis in Peach Plants. Plant and Cell Physiology, 2017, 58, 2057-2066.	1.5	32
34	Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 2017, 7, 18.	1.3	872
35	Clutathione-Mediated Biotic Stress Tolerance in Plants. , 2017, , 309-329.		32

On the Role of Salicylic Acid in Plant Responses to Environmental Stresses. , 2017, , 17-34.

18

#	Article	IF	CITATIONS
37	Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance. Annals of Botany, 2016, 117, 1121-1131.	1.4	21
38	Modified atmosphere generated during storage under light conditions is the main factor responsible for the quality changes of baby spinach. Postharvest Biology and Technology, 2016, 114, 45-53.	2.9	23
39	Oxidative stress and antioxidative responses in plant–virus interactions. Physiological and Molecular Plant Pathology, 2016, 94, 134-148.	1.3	88
40	Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. Journal of Agricultural Science, 2015, 153, 1084-1096.	0.6	28
41	Modeling the ascorbate-glutathione cycle in chloroplasts under light/dark conditions. BMC Systems Biology, 2015, 10, 11.	3.0	26
42	Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta, 2015, 242, 829-846.	1.6	120
43	GammapatÃas biclonales: ¿un significado clÃnico diferente?. Revista Clinica Espanola, 2015, 215, 31-32.	0.2	0
44	Sharka: how do plants respond to Plum pox virus infection?. Journal of Experimental Botany, 2015, 66, 25-35.	2.4	41
45	NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. Journal of Plant Physiology, 2015, 183, 41-51.	1.6	101
46	Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theoretical and Experimental Plant Physiology, 2015, 27, 215-226.	1.1	12
47	Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. Journal of Experimental Botany, 2015, 66, 863-878.	2.4	75
48	<i>Trichoderma harzianum</i> Tâ€78 supplementation of compost stimulates the antioxidant defence system in melon plants. Journal of the Science of Food and Agriculture, 2015, 95, 2208-2214.	1.7	22
49	Irrigation of <i>Myrtus communis</i> plants with reclaimed water: morphological and physiological responses to different levels of salinity. Journal of Horticultural Science and Biotechnology, 2014, 89, 487-494.	0.9	21
50	Mutation Status and Immunoglobulin Gene Rearrangements in Patients from Northwest and Central Region of Spain with Chronic Lymphocytic Leukemia. BioMed Research International, 2014, 2014, 1-8.	0.9	14
51	Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. Journal of Plant Physiology, 2014, 171, 779-788.	1.6	59
52	Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant Physiology and Biochemistry, 2014, 85, 41-50.	2.8	37
53	Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Reports, 2013, 32, 1491-1502.	2.8	99
54	Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. Journal of Plant Physiology, 2013, 170, 625-632.	1.6	33

#	Article	IF	CITATIONS
55	Antioxidant enzyme activities and hormonal status inÂresponse to Cd stress in the wetland halophyte <i>Kosteletzkya virginica</i> under saline conditions. Physiologia Plantarum, 2013, 147, 352-368.	2.6	72
56	Chloroplast protection in plum pox virusâ€infected peach plants by Lâ€2â€oxoâ€4â€thiazolidineâ€carboxylic acid treatments: effect in the proteome. Plant, Cell and Environment, 2013, 36, 640-654.	2.8	43
57	Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnology Journal, 2013, 11, 976-985.	4.1	122
58	Role of H ₂ O ₂ in pea seed germination. Plant Signaling and Behavior, 2012, 7, 193-195.	1.2	78
59	Plant growth stimulation in Prunus species plantlets by BTH or OTC treatments under in vitro conditions. Journal of Plant Physiology, 2012, 169, 1074-1083.	1.6	27
60	Role of thioproline on seed germination: Interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiology and Biochemistry, 2012, 59, 30-36.	2.8	30
61	Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu,Znâ€superoxide dismutase. Plant Pathology, 2012, 61, 858-866.	1.2	46
62	Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 2011, 62, 2599-2613.	2.4	227
63	Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biology, 2011, 13, 909-917.	1.8	68
64	Understanding the role of H ₂ O ₂ during pea seed germination: a combined proteomic and hormone profiling approach. Plant, Cell and Environment, 2011, 34, 1907-1919.	2.8	173
65	Changes in the antioxidative metabolism induced by Apple chlorotic leaf spot virus infection in peach [Prunus persica (L.) Batsch]. Environmental and Experimental Botany, 2011, 70, 277-282.	2.0	7
66	Study of the antioxidant enzymatic system during shoot development from cultured intercalar meristems of saffron. Plant Growth Regulation, 2011, 65, 119-126.	1.8	26
67	Implication of peroxidase activity in development of healthy and PPV-infected micropropagated GF305 peach plants. Plant Growth Regulation, 2011, 65, 359-367.	1.8	14
68	Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. Planta, 2010, 232, 593-605.	1.6	24
69	Characterization of the antioxidant system during the vegetative development of pea plants. Biologia Plantarum, 2010, 54, 76-82.	1.9	31
70	Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant, Cell and Environment, 2010, 33, 981-994.	2.8	182
71	Benzothiadiazole and l-2-oxothiazolidine-4-carboxylic acid reduce the severity of Sharka symptoms in pea leaves: effect on antioxidative metabolism at the subcellular level. Plant Biology, 2010, 12, 88-97.	1.8	34
72	Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 2009, 65, 245-252.	2.0	328

#	Article	IF	CITATIONS
73	Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymatic system. Plant Cell, Tissue and Organ Culture, 2009, 97, 49-57.	1.2	56
74	Analysis of the soluble cell wall proteome of gymnosperms. Journal of Plant Physiology, 2009, 166, 831-843.	1.6	14
75	Breaking seed dormancy in long-term stored seeds from Iranian wild almond species. Seed Science and Technology, 2009, 37, 267-275.	0.6	24
76	Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 2008, 35, 141.	1.1	294
77	Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. Journal of Plant Physiology, 2008, 165, 715-722.	1.6	46
78	Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 2008, 59, 2147-2160.	2.4	189
79	Structural Motifs of Syringyl Peroxidases Are Conserved during Angiosperm Evolution. Journal of Agricultural and Food Chemistry, 2007, 55, 4131-4138.	2.4	14
80	Development of molecular markers linkaged to Sharka (<i>Plum pox virus</i> , PPV) resistance in <i>Prunus</i> . Acta Phytopathologica Et Entomologica Hungarica, 2007, 42, 223-233.	0.1	1
81	Oxidative stress induction by <i> Prunus necrotic ringspot virus </i> infection in apricot seeds. Physiologia Plantarum, 2007, 131, 302-310.	2.6	19
82	Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica Lindl.). Environmental and Experimental Botany, 2007, 60, 151-158.	2.0	64
83	<i>Plum pox virus</i> (PPV) infection produces an imbalance on the antioxidative systems in <i>Prunus</i> species. Acta Phytopathologica Et Entomologica Hungarica, 2007, 42, 209-221.	0.1	7
84	Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiologia Plantarum, 2006, 126, 140-152.	2.6	80
85	The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity inCandida albicans. FEMS Yeast Research, 2006, 6, 57-62.	1.1	12
86	The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candida albicans. FEMS Yeast Research, 2006, 6, 319-319.	1.1	3
87	The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. Journal of Experimental Botany, 2006, 57, 3813-3824.	2.4	172
88	Effect of Arbuscular Mycorrhizae and Induced Drought Stress on Antioxidant Enzyme and Nitrate Reductase Activities in Juniperus oxycedrus L. Grown in a Composted Sewage Sludge-amended Semi-arid Soil. Plant and Soil, 2006, 279, 209-218.	1.8	37
89	Antioxidant enzyme induction in pea plants under high irradiance. Biologia Plantarum, 2006, 50, 395-399.	1.9	20
90	Antioxidant enzymes as biochemical markers for sharka resistance in apricot. Biologia Plantarum, 2006, 50, 400-404.	1.9	8

#	Article	IF	CITATIONS
91	The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees - Structure and Function, 2006, 20, 145-156.	0.9	54
92	Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. Biochimica Et Biophysica Acta - General Subjects, 2005, 1722, 324-330.	1.1	16
93	Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 2005, 168, 607-613.	1.7	96
94	Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Science, 2005, 169, 191-197.	1.7	72
95	Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica). Physiologia Plantarum, 2004, 122, 486-495.	2.6	103
96	Role of hydrogen peroxide and the redox state of ascorbate in the induction of antioxidant enzymes in pea leaves under excess light stress. Functional Plant Biology, 2004, 31, 359.	1.1	48
97	Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 2003, 118, 562-570.	2.6	115
98	Role of antioxidant enzymatic defences against oxidative stress (H2O2) and the acquisition of oxidative tolerance inCandida albicans. Yeast, 2003, 20, 1161-1169.	0.8	87
99	l-Galactono-γ-Lactone Dehydrogenase Activity and Vitamin C Content in Fresh-Cut Potatoes Stored under Controlled Atmospheres. Journal of Agricultural and Food Chemistry, 2003, 51, 4296-4302.	2.4	16
100	The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Functional Plant Biology, 2003, 30, 1127.	1.1	78
101	Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 2002, 115, 251-257.	2.6	383
102	Effect of Salt Stress on the Superoxide Dismutase Activity in Leaves of Citrus limonum in Different Rootstock-Scion Combinations. Biologia Plantarum, 2002, 45, 545-549.	1.9	30
103	Antioxidant Systems and O2/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins. Plant Physiology, 2001, 127, 817-831.	2.3	43
104	Response of antioxidative enzymes to plum pox virus in two apricot cultivars. Physiologia Plantarum, 2001, 111, 313-321.	2.6	58
105	Antioxidant Systems and O2 Â.â^'/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins. Plant Physiology, 2001, 127, 817-831.	2.3	624
106	Tolerance of pea (Pisum sativum L.) to longâ€ŧerm salt stress is associated with induction of antioxidant defences. Plant, Cell and Environment, 2000, 23, 853-862.	2.8	720
107	Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytologist, 1999, 141, 241-251.	3.5	234
108	Differential Response of Antioxidative Enzymes of Chloroplasts and Mitochondria to Long-term NaCl Stress of Pea Plants. Free Radical Research, 1999, 31, 11-18.	1.5	195

#	Article	IF	CITATIONS
109	Mitochondrial and peroxisomal ascorbate peroxidase of pea leaves. Physiologia Plantarum, 1998, 104, 687-692.	2.6	47
110	Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves. Plant Physiology, 1998, 118, 1327-1335.	2.3	318
111	The Activated Oxygen Role of Peroxisomes in Senescence1. Plant Physiology, 1998, 116, 1195-1200.	2.3	354
112	Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiology, 1997, 114, 275-284.	2.3	758
113	Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Molecular Genetics and Genomics, 1997, 256, 211-222.	2.4	49
114	Active oxygen metabolism in the senescence of pea leaves: ascorbate and glutathione contents in different cell compartments. Biochemical Society Transactions, 1996, 24, 198S-198S.	1.6	3
115	Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo) Tj ETQq1 I	0.784314 2.4	1 ṟǥƁT /Ov <mark>e</mark> r
116	Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell, Tissue and Organ Culture, 1996, 45, 53-60.	1.2	50
117			