
Shinya Kanzaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10585005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Applicability of Intentional Alternate Bearing Method in Mango â€~Aiko'. Horticultural Research (Japan), 2021, 20, 87-94.	0.1	0
2	<i>Ty-2</i> and <i>Ty-3a</i> Conferred Resistance are Insufficient Against Tomato Yellow Leaf Curl Kanchanaburi Virus from Southeast Asia in Single or Mixed Infections of Tomato. Plant Disease, 2020, 104, 3221-3229.	1.4	13
3	Multiple Non-pungent <i>Capsicum chinense</i> Accessions with a Loss of Function <i>CaKR1</i> Allele Originating from South America. Horticulture Journal, 2020, 89, 460-465.	0.8	2
4	Characterization of the Recombinant UDP:flavonoid 3- <i>O</i> -galactosyltransferase from <i>Mangifera indica</i> †Irwin' (MiUFGalT3) involved in Skin Coloring. Horticulture Journal, 2020, 89, 516-524.	0.8	5
5	Isolation of UDP:flavonoid 3- <i>O</i> -glycosyltransferase (UFCT)-like Genes and Expression Analysis of Genes Associated with Anthocyanin Accumulation in Mango â€Trwin' skin. Horticulture Journal, 2019, 88, 435-443.	0.8	14
6	Analysis of genetic diversity of lychee (Litchi chinensis Sonn.) and wild forest relatives in the Sapindaceae from Vietnam using microsatellites. Genetic Resources and Crop Evolution, 2019, 66, 1653-1669.	1.6	3
7	Pepper yellow leaf curl Aceh virus: a novel bipartite begomovirus isolated from chili pepper, tomato, and tobacco plants in Indonesia. Archives of Virology, 2019, 164, 2379-2383.	2.1	22
8	Inoculation of Capsicums with <i>Pepper Yellow Leaf Curl Indonesia Virus</i> by Combining Agroinoculation and Grafting. Horticulture Journal, 2018, 87, 364-371.	0.8	22
9	The Origin and Cultivar Development of Japanese Persimmon (<i>Diospyros kaki </i> Thunb.). Journal of the Japanese Society for Food Science and Technology, 2016, 63, 328-330.	0.1	18
10	Relationships among Asian persimmon cultivars, astringent and non-astringent types. Tree Genetics and Genomes, 2015, 11, 1.	1.6	26
11	Practical marker-assisted selection using two SCAR markers for fruit astringency type in crosses of â€Taiten'×PCNA cultivars in persimmon breeding. Scientia Horticulturae, 2014, 170, 219-223.	3.6	10
12	Efficiency of Hybrid Formation by Open-pollination of Two Cultivars in a Closed Plastic House and the Effect of the Male Parent on Fruit Characteristics in Mango. Japanese Society for Horticultural Science, 2012, 81, 27-34.	0.8	9
13	Development of Molecular Markers Linked to the Allele Associated with the Non-astringent Trait of the Chinese Persimmon (Diospyros kaki Thunb.). Japanese Society for Horticultural Science, 2011, 80, 150-155.	0.8	19
14	SCAR Markers for Practical Application of Marker-assisted Selection in Persimmon (Diospyros kaki) Tj ETQq0 0 0 r	gBT/Over	loçဠ 10 Tf 5(
15	Quantitative Genotyping for the Astringency Locus in Hexaploid Persimmon Cultivars using Quantitative Real-time PCR. Journal of the American Society for Horticultural Science, 2010, 135, 59-66.	1.0	25
16	Conversion of RFLP Markers for the Selection of Pollination-Constant and Non-Astringent Type Persimmons (Diospyros kaki Thunb.) into PCR-Based Markers. Japanese Society for Horticultural Science, 2009, 78, 68-73.	0.8	16

17	marker in Diospyros kaki Thunb. Tree Genetics and Genomes, 2009, 5, 483-492.	1.6	21
18	Sequence analyses of the ITS regions and the matK gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genetics and Genomes, 2008, 4, 149-158.	1.6	45

Shin	 12	
SHIN	κλι	7 A K I

#	Article	IF	CITATIONS
19	RFLP Markers for the Selection of Pollination-constant and Non-astringent (PCNA)-Type Persimmon and Examination of the Inheritance Mode of the Markers. Japanese Society for Horticultural Science, 2008, 77, 28-32.	0.8	15
20	Persimmon. , 2007, , 353-358.		2
21	A New Dominant Trait of Natural Astringency Loss of Persimmon (Diospyroskaki Thunb.) Found in a Chinese PCNA`Luo Tian Tian Shi'. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1122C-1122.	1.0	0
22	Identification of Molecular Markers Linked to the Trait of Natural Astringency Loss of Japanese Persimmon (Diospyros kaki) Fruit. Journal of the American Society for Horticultural Science, 2001, 126, 51-55.	1.0	44
23	Diospyros species in Thailand: Their distribution, fruit morphology and uses. Economic Botany, 1998, 52, 343-351.	1.7	19
24	Phylogenetic relationship of <i>Diospyros kaki</i> (persimmon) to <i>Diospyros</i> spp. (Ebenaceae) of Thailand and four temperate zone <i>Diospyros</i> spp. from an analysis of RFLP variation in amplified cpDNA. Genome, 1998, 41, 173-182.	2.0	32
25	Phylogenetic relationships of the common durian (<i>Durio zibethinus</i> Murray) to other edible fruited <i>Durio</i> spp. by RFLP analysis of an amplified region of cpDNA. Journal of Horticultural Science and Biotechnology, 1998, 73, 317-321.	1.9	6
26	Phylogenetic relationship of <i>Diospyros kaki</i> (persimmon) to <i>Diospyros</i> spp. (Ebenaceae) of Thailand and four temperate zone <i>Diospyros</i> spp. from an analysis of RFLP variation in amplified cpDNA. Genome, 1998, 41, 173-182.	2.0	17
27	Phylogenetic relationships between the jackfruit, the breadfruit and nine other Artocarpus spp. from RFLP analysis of an amplified region of cpDNA. Scientia Horticulturae, 1997, 70, 57-66.	3.6	16
28	RFLP Analysis of an Amplified Region of cpDNA for Phylogeny of the Genus Diospyros Journal of the Japanese Society for Horticultural Science, 1996, 64, 771-777.	0.5	12