Dina Scarpi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058493/publications.pdf

Version: 2024-02-01

304743 454955 1,193 67 22 30 citations h-index g-index papers 79 79 79 1255 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	New Potent Fluorescent Analogues of Strigolactones: Synthesis and Biological Activity in Parasitic Weed Germination and Fungal Branching. European Journal of Organic Chemistry, 2011, 2011, 3781-3793.	2.4	69
2	Structural diversity of bicyclic amino acids. Amino Acids, 2008, 34, 1-24.	2.7	67
3	Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death and Disease, 2012, 3, e339-e339.	6.3	48
4	Synthesis and Reactivity of Bicycles Derived from Tartaric Acid and α-Amino Acids: A Novel Class of Conformationally Constrained Dipeptide Isosteres Based upon Enantiopure 3-Aza-6,8-dioxabicyclo[3.2.1]octane-7-carboxylic Acid. Journal of Organic Chemistry, 1999, 64, 7347-7364.	3.2	43
5	Recent Advances in the Synthesis of Indenes. European Journal of Organic Chemistry, 2019, 2019, 7401-7419.	2.4	39
6	Enantiodivergent Chemoenzymatic Synthesis of 4â€Hydroxypiperidine Alkaloids. European Journal of Organic Chemistry, 2010, 2010, 5831-5840.	2.4	33
7	Construction of Cyclopenta[<i>b</i>]indol-1-ones by a Tandem Gold(I)-Catalyzed Rearrangement/Nazarov Reaction and Application to the Synthesis of Bruceolline H. Organic Letters, 2016, 18, 3922-3925.	4.6	33
8	Annulated Nâ€Heterocycles by Tandem Gold(I)â€Catalyzed [3,3]â€Rearrangement/Nazarov Reaction of Propargylic Ester Derivatives: an Experimental and Computational Study. European Journal of Organic Chemistry, 2015, 2015, 3943-3956.	2.4	32
9	Benzo[c]quinolizin-3-ones:  A Novel Class of Potent and Selective Nonsteroidal Inhibitors of Human Steroid 5α-Reductase 1. Journal of Medicinal Chemistry, 2000, 43, 3718-3735.	6.4	31
10	Synthesis of Vinylogous Amides by Gold(I)-Catalyzed Cyclization of N-Boc-Protected 6-Alkynyl-3,4-dihydro-2H-pyridines. Journal of Organic Chemistry, 2013, 78, 11007-11016.	3.2	31
11	Tailoring fluorescent strigolactones for in vivo investigations: a computational and experimental study. Organic and Biomolecular Chemistry, 2014, 12, 2960-2968.	2.8	28
12	Baker's yeast reduction of prochiral \hat{I}^3 -nitroketones. II.1 straightforward enantioselective synthesis of 2,7-dimethyl-1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry, 1995, 6, 2971-2976.	1.8	27
13	Modification of the Aza-Robinson Annulation for the Synthesis of 4-Methyl-Benzo[c]quinolizin-3-ones, Potent Inhibitors of Steroid 5α-Reductase 1. Journal of Organic Chemistry, 2000, 65, 8093-8095.	3.2	27
14	Predicting Reactivity and Stereoselectivity in the Nazarov Reaction: A Combined Computational and Experimental Study. Chemistry - A European Journal, 2008, 14, 9292-9304.	3.3	27
15	Enantioselective addition of diethylzinc to aldehydes using 1,4-aminoalcohols as chiral ligands. Tetrahedron: Asymmetry, 2004, 15, 1319-1324.	1.8	26
16	Baker's yeast reduction of prochiral $\hat{1}^3$ -nitroketones: Enantioselective synthesis of (S)-4-nitroalcohols. Tetrahedron, 1995, 51, 1775-1788.	1.9	24
17	A Concise Route to 19-Nor-10-azasteroids, a New Class of Steroid $5\hat{l}$ ±-Reductase Inhibitors. 3.1 Synthesis of (+)-19-Nor-10-azatestosterone and (+)-17 \hat{l} ²-(Acetyloxy)-($5\hat{l}$ ²)-10-azaestr-1-en-3-one. Journal of Organic Chemistry, 1998, 63, 4111-4115.	3.2	24
18	Synthesis of a new enantiopure bicyclic $\hat{l}^3\hat{l}$ -amino acid (BTKa) derived from tartaric acid and \hat{l} ±-amino acetophenone. Tetrahedron, 2002, 58, 9865-9870.	1.9	24

#	Article	IF	CITATIONS
19	Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity. Journal of Natural Products, 2015, 78, 2624-2633.	3.0	24
20	Stereoselective Meisenheimer rearrangement using BTAa's as chiral auxiliaries. Tetrahedron: Asymmetry, 2000, 11, 4227-4238.	1.8	23
21	Complementary and Stereodivergent Approaches to the Synthesis of 5â€Hydroxy―and 4,5â€Dihydroxypipecolic Acids from Enantiopure Hydroxylated Lactams. European Journal of Organic Chemistry, 2013, 2013, 1306-1317.	2.4	23
22	Goldâ€Catalysed Synthesis of Exocyclic Vinylogous Amides and βâ€Amino Ketones: A Detailed Study on the 5â€ <i>exo</i> /6â€ <i>endo</i> ág Selectivity, Methodology and Scope. European Journal of Organic Chemistry, 2015, 2015, 3251-3265.	2.4	23
23	Total Synthesis of Bruceolline I. Journal of Natural Products, 2017, 80, 2384-2388.	3.0	23
24	Effect of C-ring modifications in benzo[c] quinolizin-3-ones, new selective inhibitors of human $5\hat{l}_{\pm}$ -reductase 1. Bioorganic and Medicinal Chemistry, 2001, 9, 1385-1393.	3.0	22
25	Synthesis of benzo[c]quinolizin-3-ones: Selective non-steroidal inhibitors of steroid 5α-reductase 1. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2871-2876.	2.2	21
26	Inhibition of human β-tryptase by Bowman–Birk inhibitor derived peptides: creation of a new tri-functional inhibitor. Bioorganic and Medicinal Chemistry, 2004, 12, 6045-6052.	3.0	20
27	Selectivity of Daucus carota roots and baker $\hat{a} \in \mathbb{N}$ s yeast in the enantioselective reduction of \hat{l}^3 -nitroketones. Tetrahedron: Asymmetry, 2005, 16, 1479-1483.	1.8	20
28	Synthesis of 8-chloro-benzo [c]quinolizin-3-ones as potent and selective inhibitors of human steroid 51±-reductase 1. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 353-356.	2.2	19
29	N-Substituent effects on the diethylzinc addition to benzaldehyde catalysed by bicyclic 1,4-amino alcohols. Tetrahedron: Asymmetry, 2009, 20, 340-350.	1.8	19
30	Pentannulation Reaction by Tandem Gold(I)-Catalyzed Propargyl Claisen Rearrangement/Nazarov Cyclization of Enynyl Vinyl Ethers. Organic Letters, 2018, 20, 4713-4717.	4.6	19
31	Introduction of the new dipeptide isostere 7-endo-BtA as reverse turn inducer in a Bowman-Birk proteinase inhibitor. Bioorganic and Medicinal Chemistry, 2001, 9, 1625-1632.	3.0	18
32	Carbonylative Palladium-Catalyzed Reactions of Lactam-, Lactone-, and Thiolactone-Derived Vinyl Triflates and Phosphates for the Synthesis of N-, O-, and S-Heterocycles. Heterocycles, 2010, 80, 697.	0.7	18
33	5α-Reductase activity in Lycopersicon esculentum: Cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 287-299.	2.5	17
34	A Short and Convenient Synthesis of Enantiopure cis- and trans-4-Hydroxypipecolic Acid. Synthesis, 2009, 2009, 3611-3616.	2.3	17
35	Cyclopropane Pipecolic Acids as Templates for Linear and Cyclic Peptidomimetics: Application in the Synthesis of an Argâ \in Glyâ \in Asp (RGD)â \in Containing Peptide as an Î \pm _v Î 2 ₃ Integrin Ligand Chemistry - A European Journal, 2014, 20, 11187-11203.	. 3.3	17
36	Synthesis of a new 1,4-aminoalcohol and its use as catalyst in the enantioselective addition of organozinc to aldehydes. Tetrahedron: Asymmetry, 2006, 17, 1409-1414.	1.8	16

#	Article	IF	Citations
37	Stereoselective Synthesis of (2 <i>>S</i> ,4 <i>R</i>)â€4â€Hydroxypipecolic Acid. European Journal of Organic Chemistry, 2008, 2008, 524-531.	2.4	16
38	A Short, Chemoâ€Enzymatic Synthesis of Both Enantiomers of <i>trans</i> å€3â€HydroxyÂpipecolic Acid. European Journal of Organic Chemistry, 2014, 2014, 5448-5455.	2.4	14
39	Cyclic RGD peptidomimetics containing 4- and 5-amino-cyclopropane pipecolic acid (CPA) templates as dual $\hat{l}\pm V\hat{l}^2$ 3 and $\hat{l}\pm 5\hat{l}^2$ 1 integrin ligands. Bioorganic and Medicinal Chemistry, 2016, 24, 703-711.	3.0	14
40	Synthesis and conformational analysis of peptides embodying 2,3-methanopipecolic acids. Organic and Biomolecular Chemistry, 2017, 15, 6826-6836.	2.8	14
41	Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers. Journal of Organic Chemistry, 2019, 84, 6298-6311.	3.2	14
42	Diastereodivergent Synthesis of 4â€Hydroxyâ€2,3â€methanopipecolic Acid Derivatives as Conformationally Constrained Homoserine Analogues. European Journal of Organic Chemistry, 2011, 2011, 6544-6552.	2.4	13
43	A Gold(I)â€Catalyzed Oxidative Rearrangement of Heterocycleâ€Derived 1,3â€Enynes Provides an Efficient and Selective Route to Divinyl Ketones. European Journal of Organic Chemistry, 2017, 2017, 6228-6238.	2.4	12
44	A Short and Efficient Route to Enantiopure 3,5-Diarylpyrrolizidines. Journal of Organic Chemistry, 1999, 64, 1727-1732.	3.2	11
45	Stereoselectivity in the TiCl4-catalysed reaction of Danishefsky's diene with a N-(acyloxy)iminium ion: Synthesis of $5\hat{l}^{\pm}$ versus $5\hat{l}^{2}$ \hat{l}^{2} \hat{l}	1.9	10
46	Synthesis of $17\hat{l}^2$ -N-Substituted 19-Nor-10-azasteroids as Inhibitors of Human $5\hat{l}_{\pm}$ -Reductases I and II. Bioorganic and Medicinal Chemistry, 2002, 10, 3455-3461.	3.0	10
47	Synthesis of enantiopure 2,7-diaryl-1,6-dioxaspiro [4.4] nonanes via enantioselective reduction of prochiral \hat{I}^3 -nitroketones by diisopinocampheylchloroborane (DIP-C1 \hat{a} ,¢). Tetrahedron: Asymmetry, 1996, 7, 1929-1942.	1.8	9
48	Synthesis of new molecular scaffolds: 3-aza-7,9-dioxa-bicyclo[4.2.1]nonane (8-exo BTKa) and 3-aza-8,10-dioxa-bicyclo[5.2.1]decane (9-exo BTKa) carboxylic acids. Tetrahedron, 2004, 60, 2583-2591.	1.9	8
49	Expeditious Racemic and Enantiodivergent Synthesis of 1â€Deoxymannojirimycin and 1,4â€Dideoxymannojirimycin. European Journal of Organic Chemistry, 2012, 2012, 2597-2605.	2.4	8
50	Gold(I) atalysed Hydroarylation of Lactamâ€Derived Enynes as an Entry to Tetrahydrobenzo[<i>g</i>]quinolines. European Journal of Organic Chemistry, 2020, 2020, 646-653.	2.4	6
51	Synthesis of (±)â€∢i>epiÀungianol by the Gold(I)â€Catalyzed Propargyl Claisen Rearrangement/Hydroarylation Cascade Reaction of Propargyl Vinyl Ethers. European Journal of Organic Chemistry, 2021, 2021, 1266-1273.	2.4	6
52	Design, Synthesis, and Applications of 3-Aza-6,8-Dioxabicyclo[3.2.1]Octane-Based Scaffolds for Peptidomimetic Chemistry. Synlett, 2006, 2006, 0331-0353.	1.8	5
53	One-Pot Access to 1,7a-Dihydro-1,3a-ethano-indene and 1,8a-Dihydro-1,3a-ethano-azulene Skeletons by a Sequential Gold(I)-Catalyzed Propargyl Claisen Rearrangement/Nazarov Cyclization/[4+2] Cycloaddition Reaction. Journal of Organic Chemistry, 2020, 85, 5078-5086.	3.2	5
54	Synthesis of Both Enantiomers of the Streptomyces Alkaloid 4-epi-SS20846A. Synthesis, 2012, 44, 3688-3692.	2.3	4

#	Article	IF	CITATIONS
55	Stereodivergent synthesis of 5-aminopipecolic acids and application in the preparation of a cyclic RGD peptidomimetic as a nanomolar \hat{l}_{s} sub> \hat{l}_{s} sub> \hat{l}_{s} integrin ligand. Organic and Biomolecular Chemistry, 2018, 16, 3402-3414.	2.8	4
56	Asymmetric hydrogenation of prochiral \hat{l}^3 -nitroketones by ruthenium complexes. Journal of Molecular Catalysis A, 1996, 110, 129-134.	4.8	3
57	Chemistry of Lactam-Derived Vinyl Phosphates: Stereoselective Synthesis of (+)-Fagomine. Synlett, 2009, 2009, 913-916.	1.8	3
58	Gold(I)-Catalyzed Cycloisomerization/Hetero-Diels–Alder Reaction/Ring Opening Cascade to Functionalized Cyclopentadienes. Journal of Organic Chemistry, 2022, 87, 6038-6051.	3.2	3
59	3-Aza-8,10-dioxa-bicyclo[5.2.1]decane (9-exo BTKa) carboxylic acid as a new reverse turn inducer: synthesis and conformational analysis of a model peptide. Tetrahedron, 2006, 62, 1575-1582.	1.9	2
60	A New, Practical and Efficient Method for Protecting Alcohols as tert-Butyl Ethers. Synlett, 2010, 2010, 812-816.	1.8	2
61	Pentannulation of N-heterocycles by a tandem gold-catalyzed [3,3]-rearrangement/Nazarov reaction of propargyl ester derivatives: a computational study on the crucial role of the nitrogen atom. Beilstein Journal of Organic Chemistry, 2020, 16, 3059-3068.	2.2	2
62	One-Pot Pictet-Spengler Reaction and Esterification for the Preparation of a Key Tadalafil Synthetic Intermediate. Letters in Organic Chemistry, 2010, 7, 311-313.	0.5	1
63	Enantioselective Synthesis of <i>cis</i> and <i>trans</i> 4â€Aminopipecolic Acids as γâ€Amino Acids for the Construction of Cyclic RGDâ€Containing Peptidomimetics Antagonists of α _V β ₃ Integrin. European Journal of Organic Chemistry, 2020, 2020, 4371-4383.	2.4	1
64	Synthesis of New Molecular Scaffolds: 3-Aza-7,9-dioxa-bicyclo[4.2.1]nonane (8-exo BTKa) and 3-Aza-8,10-dioxa-bicyclo[5.2.1]decane (9-exo BTKa) Carboxylic Acids ChemInform, 2004, 35, no.	0.0	0
65	Enantioselective Addition of Diethylzinc to Aldehydes Using 1,4-Aminoalcohols as Chiral Ligands ChemInform, 2004, 35, no.	0.0	0
66	Chemistry of Lactam-Derived Vinyl Phosphates: Stereoselective Synthesis of (+)-Fagomine. Synlett, 2010, 2010, 839-839.	1.8	0
67	Short synthesis of racemic 5-hydroxy-6-hydroxymethylpiperidin-2-one. Chemical Data Collections, 2018, 13-14, 11-16.	2.3	O