## **Pascal Dievart**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058299/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An updated empirical correlation formalism for laminar flame speeds: Application to a TRFE gasoline surrogate in highly diluted conditions. Fuel, 2022, 324, 124682.                                                          | 6.4 | 3         |
| 2  | Theoretical Reassessment and Model Validation of Some Kinetic Parameters Relevant to Si/Cl/H<br>Systems. Journal of Physical Chemistry A, 2021, 125, 2446-2459.                                                               | 2.5 | 4         |
| 3  | Contributions of Experimental Data Obtained in Concentrated Mixtures to Kinetic Studies: Application to Monomethylhydrazine Pyrolysis. Journal of Physical Chemistry A, 2020, 124, 6214-6236.                                 | 2.5 | 12        |
| 4  | Combustion of synthetic jet fuels: Naphthenic cut and blend with a gas-to-liquid (GtL) jet fuel.<br>Proceedings of the Combustion Institute, 2017, 36, 433-440.                                                               | 3.9 | 11        |
| 5  | An experimental study in a jet-stirred reactor and a comprehensive kinetic mechanism for the oxidation of methyl ethyl ketone. Proceedings of the Combustion Institute, 2017, 36, 459-467.                                    | 3.9 | 40        |
| 6  | Experimental and Modeling Study of the Combustion of Synthetic Jet Fuels: Naphtenic Cut and Blend<br>With a GtL Jet Fuel. , 2016, , .                                                                                         |     | 0         |
| 7  | Quantitative measurements of HO 2 /H 2 O 2 and intermediate species in low and intermediate temperature oxidation of dimethyl ether. Proceedings of the Combustion Institute, 2015, 35, 457-464.                              | 3.9 | 61        |
| 8  | Self-sustaining n -heptane cool diffusion flames activated by ozone. Proceedings of the Combustion<br>Institute, 2015, 35, 881-888.                                                                                           | 3.9 | 118       |
| 9  | Detection and Identification of the Keto-Hydroperoxide (HOOCH <sub>2</sub> OCHO) and Other<br>Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A,<br>2015, 119, 7361-7374.     | 2.5 | 143       |
| 10 | Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a<br>Jet-Stirred Reactor: Experimental and Modeling Study. Journal of Engineering for Gas Turbines and<br>Power, 2015, 137, . | 1.1 | 8         |
| 11 | Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling.<br>Combustion Science and Technology, 2014, 186, 1275-1283.                                                             | 2.3 | 8         |
| 12 | Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combustion and Flame, 2014, 161, 835-847.                                                                                        | 5.2 | 111       |
| 13 | Importance of a Cycloalkane Functionality in the Oxidation of a Real Fuel. Energy & Fuels, 2014, 28, 7649-7661.                                                                                                               | 5.1 | 44        |
| 14 | Experimental Study of the Oxidation of <i>N</i> -Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed<br>Chemical Kinetic Modeling. Combustion Science and Technology, 2014, 186, 594-606.                                 | 2.3 | 9         |
| 15 | Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GTL/1-Hexanol in a<br>Jet-Stirred Reactor: Experimental and Modeling Study. , 2014, , .                                                        |     | Ο         |
| 16 | A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, 2013, 34, 821-829.                                                 | 3.9 | 78        |
| 17 | The combustion properties of 1,3,5-trimethylbenzene and a kinetic model. Fuel, 2013, 109, 125-136.                                                                                                                            | 6.4 | 41        |
| 18 | A Comparative Study of the Kinetics of Ethyl and Methyl Esters in Diffusion Flame Extinction. , 2013, , .                                                                                                                     |     | 0         |

PASCAL DIEVART

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kinetics of Oxidation of a Reformulated Jet Fuel (1-Hexanol/Jet A-1) in a Jet-Stirred Reactor:<br>Experimental and Modeling Study. Combustion Science and Technology, 2012, 184, 1039-1050.                                                 | 2.3 | 11        |
| 20 | Measurements and Modeling of the Laminar Flame Speeds of n-Propyl and 1,3,5-TriMethyl Benzenes at<br>Moderate Pressures. , 2012, , .                                                                                                        |     | 0         |
| 21 | A kinetic model for methyl decanoate combustion. Combustion and Flame, 2012, 159, 1793-1805.                                                                                                                                                | 5.2 | 82        |
| 22 | The oxidation of n-butylbenzene: Experimental study in a JSR at 10atm and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 2011, 33, 209-216.                                                                   | 3.9 | 39        |
| 23 | Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study.<br>Energy & Fuels, 2010, 24, 4904-4911.                                                                                            | 5.1 | 37        |
| 24 | Kinetics of Oxidation of Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimental<br>and Modeling Studies. Energy & Fuels, 2010, 24, 1668-1676.                                                                         | 5.1 | 58        |
| 25 | Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred<br>Reactor and a Combustion Bomb. Energy & Fuels, 2010, 24, 5859-5875.                                                                 | 5.1 | 52        |
| 26 | Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in<br>reversed-phase high-performance liquid chromatography by using factorial design and response<br>surface methodology. Talanta, 2010, 81, 265-274. | 5.5 | 18        |
| 27 | Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl<br>(E)-2-butenoate and methyl butanoate. Combustion and Flame, 2008, 155, 635-650.                                                                | 5.2 | 143       |
| 28 | Tropospheric multiphase chemistry of 2,5- and 2,6-dimethylphenols: determination of the mass<br>accommodation coefficients and the Henry's law constants. Physical Chemistry Chemical Physics,<br>2006, 8, 1714.                            | 2.8 | 4         |