Pascal Dievart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1058299/publications.pdf

Version: 2024-02-01

28 papers 1,135 citations

567281 15 h-index 24 g-index

28 all docs 28 docs citations

times ranked

28

888 citing authors

#	Article	IF	CITATIONS
1	Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. Combustion and Flame, 2008, 155, 635-650.	5.2	143
2	Detection and Identification of the Keto-Hydroperoxide (HOOCH ₂ OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7361-7374.	2.5	143
3	Self-sustaining n -heptane cool diffusion flames activated by ozone. Proceedings of the Combustion Institute, 2015, 35, 881-888.	3.9	118
4	Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combustion and Flame, 2014, 161, 835-847.	5.2	111
5	A kinetic model for methyl decanoate combustion. Combustion and Flame, 2012, 159, 1793-1805.	5.2	82
6	A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, 2013, 34, 821-829.	3.9	78
7	Quantitative measurements of HO 2 /H 2 O 2 and intermediate species in low and intermediate temperature oxidation of dimethyl ether. Proceedings of the Combustion Institute, 2015, 35, 457-464.	3.9	61
8	Kinetics of Oxidation of Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimental and Modeling Studies. Energy & Energy & 2010, 24, 1668-1676.	5.1	58
9	Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb. Energy & Energy	5.1	52
10	Importance of a Cycloalkane Functionality in the Oxidation of a Real Fuel. Energy &	5.1	44
11	The combustion properties of 1,3,5-trimethylbenzene and a kinetic model. Fuel, 2013, 109, 125-136.	6.4	41
12	An experimental study in a jet-stirred reactor and a comprehensive kinetic mechanism for the oxidation of methyl ethyl ketone. Proceedings of the Combustion Institute, 2017, 36, 459-467.	3.9	40
13	The oxidation of n-butylbenzene: Experimental study in a JSR at 10atm and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 2011, 33, 209-216.	3.9	39
14	Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study. Energy & Energy	5.1	37
15	Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology. Talanta, 2010, 81, 265-274.	5.5	18
16	Contributions of Experimental Data Obtained in Concentrated Mixtures to Kinetic Studies: Application to Monomethylhydrazine Pyrolysis. Journal of Physical Chemistry A, 2020, 124, 6214-6236.	2.5	12
17	Kinetics of Oxidation of a Reformulated Jet Fuel (1-Hexanol/Jet A-1) in a Jet-Stirred Reactor: Experimental and Modeling Study. Combustion Science and Technology, 2012, 184, 1039-1050.	2.3	11
18	Combustion of synthetic jet fuels: Naphthenic cut and blend with a gas-to-liquid (GtL) jet fuel. Proceedings of the Combustion Institute, 2017, 36, 433-440.	3.9	11

#	Article	IF	CITATIONS
19	Experimental Study of the Oxidation of <i>N</i> -Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed Chemical Kinetic Modeling. Combustion Science and Technology, 2014, 186, 594-606.	2.3	9
20	Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2014, 186, 1275-1283.	2.3	8
21	Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	8
22	Tropospheric multiphase chemistry of 2,5- and 2,6-dimethylphenols: determination of the mass accommodation coefficients and the Henry $\hat{a} \in \mathbb{N}$ s law constants. Physical Chemistry Chemical Physics, 2006, 8, 1714.	2.8	4
23	Theoretical Reassessment and Model Validation of Some Kinetic Parameters Relevant to Si/Cl/H Systems. Journal of Physical Chemistry A, 2021, 125, 2446-2459.	2.5	4
24	An updated empirical correlation formalism for laminar flame speeds: Application to a TRFE gasoline surrogate in highly diluted conditions. Fuel, 2022, 324, 124682.	6.4	3
25	Measurements and Modeling of the Laminar Flame Speeds of n-Propyl and 1,3,5-TriMethyl Benzenes at Moderate Pressures. , 2012, , .		O
26	A Comparative Study of the Kinetics of Ethyl and Methyl Esters in Diffusion Flame Extinction. , 2013, , .		0
27	Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GTL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study. , 2014 , , .		0
28	Experimental and Modeling Study of the Combustion of Synthetic Jet Fuels: Naphtenic Cut and Blend With a GtL Jet Fuel. , 2016 , , .		0