
Sandor Gyorke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10581224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Calsequestrin, Triadin, and Junctin in Conferring Cardiac Ryanodine Receptor Responsiveness to Luminal Calcium. Biophysical Journal, 2004, 86, 2121-2128.	0.2	376
2	Regulation of the Cardiac Ryanodine Receptor Channel by Luminal Ca2+ Involves Luminal Ca2+ Sensing Sites. Biophysical Journal, 1998, 75, 2801-2810.	0.2	364
3	Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca ²⁺ Leak in Chronic Heart Failure. Circulation Research, 2008, 103, 1466-1472.	2.0	315
4	<i>miR-1</i> Overexpression Enhances Ca ²⁺ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B561± and Causing CaMKII-Dependent Hyperphosphorylation of RyR2. Circulation Research, 2009, 104, 514-521.	2.0	268
5	Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11759-11764.	3.3	224
6	Luminal Ca2+Controls Termination and Refractory Behavior of Ca2+-Induced Ca2+Release in Cardiac Myocytes. Circulation Research, 2002, 91, 414-420.	2.0	201
7	Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research, 2007, 77, 245-255.	1.8	201
8	Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2006, 114, 1012-1019.	1.6	189
9	Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1996, 432, 1047-1054.	1.3	186
10	Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14104-14109.	3.3	182
11	Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death. Circulation Research, 2006, 98, 1151-1158.	2.0	179
12	Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin. Circulation Research, 2004, 94, 471-477.	2.0	158
13	Ca2+sparks and Ca2+waves in saponin-permeabilized rat ventricular myocytes. Journal of Physiology, 1999, 521, 575-585.	1.3	155
14	Dynamic Regulation of Sarcoplasmic Reticulum Ca2+ Content and Release by Luminal Ca2+-Sensitive Leak in Rat Ventricular Myocytes. Biophysical Journal, 2001, 81, 785-798.	0.2	142
15	MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE, 2011, 6, e28324.	1.1	134
16	Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 2009, 84, 387-395.	1.8	133
17	Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1787-R1797.	0.9	112
18	Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. European Heart Journal, 2015, 36, 686-697.	1.0	110

#	Article	IF	CITATIONS
19	The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovascular Research, 2011, 90, 493-502.	1.8	109
20	The role of luminal Ca2+in the generation of Ca2+waves in rat ventricular myocytes. Journal of Physiology, 1999, 518, 173-186.	1.3	105
21	Shortened Ca ²⁺ Signaling Refractoriness Underlies Cellular Arrhythmogenesis in a Postinfarction Model of Sudden Cardiac Death. Circulation Research, 2012, 110, 569-577.	2.0	99
22	Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation, 2015, 132, 567-577.	1.6	99
23	Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch. PLoS ONE, 2015, 10, e0126338.	1.1	96
24	Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Frontiers in Bioscience - Landmark, 2002, 7, d1454-1463.	3.0	94
25	Enhanced Ryanodine Receptor-Mediated Calcium Leak Determines Reduced Sarcoplasmic Reticulum Calcium Content in Chronic Canine Heart Failure. Biophysical Journal, 2007, 93, 4083-4092.	0.2	94
26	Termination of Ca2+release during Ca2+sparks in rat ventricular myocytes. Journal of Physiology, 1998, 507, 667-677.	1.3	92
27	Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death. Biophysical Journal, 2008, 95, 2037-2048.	0.2	91
28	Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor <i>S</i> â€nitrosylation. Journal of Physiology, 2010, 588, 2905-2917.	1.3	80
29	Molecular basis of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2009, 6, 123-129.	0.3	78
30	Modulation of the Ca 2+ â€induced Ca 2+ release cascade by βâ€adrenergic stimulation in rat ventricular myocytes. Journal of Physiology, 2001, 533, 837-848.	1.3	76
31	Protein Phosphatases Decrease Sarcoplasmic Reticulum Calcium Content by Stimulating Calcium Release in Cardiac Myocytes. Journal of Physiology, 2003, 552, 109-118.	1.3	74
32	Triadin Overexpression Stimulates Excitation-Contraction Coupling and Increases Predisposition to Cellular Arrhythmia in Cardiac Myocytes. Circulation Research, 2005, 96, 651-658.	2.0	73
33	Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Research in Cardiology, 2020, 115, 38.	2.5	73
34	Inhibition of Ca2+ Sparks by Ruthenium Red in Permeabilized Rat Ventricular Myocytes. Biophysical Journal, 2000, 79, 1273-1284.	0.2	70
35	Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovascular Research, 2011, 91, 71-79.	1.8	70
36	Upregulation of Adenosine A1 Receptors Facilitates Sinoatrial Node Dysfunction in Chronic Canine Heart Failure by Exacerbating Nodal Conduction Abnormalities Revealed by Novel Dual-Sided Intramural Optical Mapping. Circulation, 2014, 130, 315-324.	1.6	70

#	Article	IF	CITATIONS
37	Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Frontiers in Physiology, 2012, 3, 292.	1.3	68
38	Chronic heart failure and the substrate for atrial fibrillation. Cardiovascular Research, 2009, 84, 227-236.	1.8	67
39	Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Frontiers in Bioscience - Landmark, 2002, 7, d1454.	3.0	63
40	Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure. PLoS ONE, 2014, 9, e108824.	1.1	62
41	Dysregulated sarcoplasmic reticulum calcium release: Potential pharmacological target in cardiac disease. , 2008, 119, 340-354.		57
42	â€~Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure. Cardiovascular Research, 2013, 98, 240-247.	1.8	57
43	Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca ²⁺ release in a genetic model of arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10312-10317.	3.3	53
44	A mutation in calsequestrin, CASQ2D307H, impairs Sarcoplasmic Reticulum Ca2+ handling and causes complex ventricular arrhythmias in mice. Cardiovascular Research, 2007, 75, 69-78.	1.8	52
45	Underlying Mechanisms of Symmetric Calcium Wave Propagation in Rat Ventricular Myocytes. Biophysical Journal, 2001, 80, 1-11.	0.2	51
46	Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. Journal of Physiology, 2004, 561, 515-524.	1.3	50
47	Cardiac calsequestrin: quest inside the SR. Journal of Physiology, 2009, 587, 3091-3094.	1.3	48
48	Protein-protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes. Journal of Physiology, 2007, 583, 71-80.	1.3	46
49	Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. Journal of General Physiology, 2013, 142, 127-136.	0.9	46
50	Calcium Activation of Ryanodine Receptor Channels—Reconciling RyR Gating Models with Tetrameric Channel Structure. Journal of General Physiology, 2005, 126, 515-527.	0.9	45
51	Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart. Science Signaling, 2015, 8, ra72.	1.6	45
52	Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease. Nature Communications, 2016, 7, 10794.	5.8	45
53	Intraâ€sarcoplasmic reticulum Ca ²⁺ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca ²⁺ in cardiomyocytes. Journal of Physiology, 2009, 587, 4863-4872.	1.3	44
54	Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin. Biochemical Journal, 2008, 413, 291-303.	1.7	42

#	Article	IF	CITATIONS
55	Ryanodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycosides. Cardiovascular Research, 2014, 101, 165-174.	1.8	41
56	Adaptation of Single Cardiac Ryanodine Receptor Channels. Biophysical Journal, 1997, 72, 691-697.	0.2	39
57	Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nature Communications, 2020, 11, 512.	5.8	39
58	Effects of dietary omega–3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1219-H1228.	1.5	38
59	Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release. Cardiovascular Research, 2015, 106, 143-152.	1.8	38
60	Nitric Oxide Synthases and Atrial Fibrillation. Frontiers in Physiology, 2012, 3, 105.	1.3	37
61	Chronic cardiac resynchronization therapy and reverse ventricular remodeling in a model of nonischemic cardiomyopathy. Life Sciences, 2007, 81, 1152-1159.	2.0	36
62	Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. Journal of Physiology, 2011, 589, 4697-4708.	1.3	36
63	The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2 function. Cell Calcium, 2019, 82, 102063.	1.1	34
64	Activation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes. American Journal of Physiology - Cell Physiology, 2004, 286, C330-C341.	2.1	33
65	Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Scientific Reports, 2019, 9, 10179.	1.6	33
66	EHD3-Dependent Endosome Pathway Regulates Cardiac Membrane Excitability and Physiology. Circulation Research, 2014, 115, 68-78.	2.0	32
67	Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrinâ€Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Journal of the American Heart Association, 2018, 7, .	1.6	32
68	Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling. Scientific Reports, 2020, 10, 20463.	1.6	32
69	Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation. JACC Basic To Translational Science, 2016, 1, 251-266.	1.9	31
70	Repolarization abnormalities and afterdepolarizations in a canine model of sudden cardiac death. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1463-R1472.	0.9	28
71	Abnormal Calcium Cycling and Cardiac Arrhythmias Associated With the Human Ser96Ala Genetic Variant of Histidineâ€Rich Calciumâ€Binding Protein. Journal of the American Heart Association, 2013, 2, e000460.	1.6	28
72	Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes. Biological Research, 2004, 37, 603-7.	1.5	27

#	Article	IF	CITATIONS
73	Synergistic interactions between Ca2+entries through L-type Ca2+channels and Na+-Ca2+exchanger in normal and failing rat heart. Journal of Physiology, 2005, 567, 493-504.	1.3	26
74	The Catecholaminergic Polymorphic Ventricular Tachycardia Mutation R33Q Disrupts the N-terminal Structural Motif That Regulates Reversible Calsequestrin Polymerization. Journal of Biological Chemistry, 2010, 285, 17188-17196.	1.6	26
75	Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants. Biochemical Journal, 2011, 435, 391-399.	1.7	26
76	Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise. Basic Research in Cardiology, 2013, 108, 332.	2.5	26
77	Genetic ablation of ryanodine receptor 2 phosphorylation at Serâ€2808 aggravates Ca ²⁺ â€dependent cardiomyopathy by exacerbating diastolic Ca ²⁺ release. Journal of Physiology, 2014, 592, 1957-1973.	1.3	26
78	Tetrodotoxin-sensitive Navs contribute to early and delayed afterdepolarizations in long QT arrhythmia models. Journal of General Physiology, 2018, 150, 991-1002.	0.9	25
79	Heart failure duration progressively modulates the arrhythmia substrate through structural and electrical remodeling. Life Sciences, 2015, 123, 61-71.	2.0	24
80	Alternating membrane potential/calcium interplay underlies repetitive focal activity in a genetic model of calciumâ€dependent atrial arrhythmias. Journal of Physiology, 2015, 593, 1443-1458.	1.3	24
81	Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Scientific Reports, 2019, 9, 13188.	1.6	24
82	Endurance exercise training normalizes repolarization and calcium-handling abnormalities, preventing ventricular fibrillation in a model of sudden cardiac death. Journal of Applied Physiology, 2012, 113, 1772-1783.	1.2	23
83	Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise. Journal of Molecular and Cellular Cardiology, 2015, 81, 54-61.	0.9	22
84	Modal gating transitions in cardiac ryanodine receptors during increases of Ca 2+ concentration produced by photolysis of caged Ca 2+. Pflugers Archiv European Journal of Physiology, 1999, 438, 283-288.	1.3	21
85	Ca2+ Alternans in a Cardiac Myocyte Model that Uses Moment Equations to Represent Heterogeneous Junctional SR Ca2+. Biophysical Journal, 2010, 99, 377-387.	0.2	21
86	Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension, 2016, 68, 1171-1178.	1.3	21
87	Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovascular Research, 2015, 108, 299-311.	1.8	20
88	Distributed synthesis of sarcolemmal and sarcoplasmic reticulum membrane proteins in cardiac myocytes. Basic Research in Cardiology, 2021, 116, 63.	2.5	19
89	Response. Science, 1994, 263, 987-988.	6.0	18
90	Adaptive control of intracellular Ca2+ release in C2C12 mouse myotubes. Pflugers Archiv European Journal of Physiology, 1996, 431, 838-843.	1.3	18

#	Article	IF	CITATIONS
91	Chain-reaction Ca2+ signaling in the heart. Journal of Clinical Investigation, 2007, 117, 1758-1762.	3.9	18
92	Diesterified Nitrone Rescues Nitroso-Redox Levels and Increases Myocyte Contraction Via Increased SR Ca2+ Handling. PLoS ONE, 2012, 7, e52005.	1.1	18
93	Store-dependent deactivation: Cooling the chain-reaction of myocardial calcium signaling. Journal of Molecular and Cellular Cardiology, 2013, 58, 77-83.	0.9	17
94	Neuronal sodium channels: emerging components of the nanoâ€machinery of cardiac calcium cycling. Journal of Physiology, 2017, 595, 3823-3834.	1.3	17
95	The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Research in Cardiology, 2017, 112, 44.	2.5	17
96	Super-Resolution Imaging Using a Novel High-Fidelity Antibody Reveals Close Association of the Neuronal Sodium Channel Na _V 1.6 with Ryanodine Receptors in Cardiac Muscle. Microscopy and Microanalysis, 2020, 26, 157-165.	0.2	16
97	MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca ²⁺ release in hypertrophic rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H615-H632.	1.5	16
98	Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circulation Research, 2022, 130, 711-724.	2.0	16
99	Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae. Journal of Muscle Research and Cell Motility, 2014, 35, 225-234.	0.9	15
100	The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. Journal of General Physiology, 2017, 149, 877-888.	0.9	15
101	Chronic heart failure increases negative chronotropic effects of adenosine in canine sinoatrial cells via A1R stimulation and GIRK-mediated IKado. Life Sciences, 2020, 240, 117068.	2.0	14
102	Potentiation of sarcoplasmic reticulum Ca2+ release by 2,3-butanedione monoxime in crustacean muscle. Pflugers Archiv European Journal of Physiology, 1993, 424, 39-44.	1.3	13
103	miRNAs got rhythm. Life Sciences, 2011, 88, 373-383.	2.0	13
104	Functional consequences of stably expressing a mutant calsequestrin (CASQ2D307H) in the CASQ2 null background. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H253-H261.	1.5	12
105	Ibandronate and Ventricular Arrhythmia Risk. Journal of Cardiovascular Electrophysiology, 2014, 25, 299-306.	0.8	11
106	Differential Effects of the Peroxynitrite Donor, SIN-1, on Atrial and Ventricular Myocyte Electrophysiology. Journal of Cardiovascular Pharmacology, 2013, 61, 401-407.	0.8	10
107	Cardiac Arrhythmias as Manifestations of Nanopathies: An Emerging View. Frontiers in Physiology, 2018, 9, 1228.	1.3	10
108	Calsequestrin, triadin and more: the molecules that modulate calcium release in cardiac and skeletal muscle. Journal of Physiology, 2009, 587, 3069-3070.	1.3	9

#	Article	IF	CITATIONS
109	Dietary Omega-3 Fatty Acids Promote Arrhythmogenic Remodeling of Cellular Ca2+ Handling in a Postinfarction Model of Sudden Cardiac Death. PLoS ONE, 2013, 8, e78414.	1.1	9
110	Conditional Up-Regulation of SERCA2a Exacerbates RyR2-Dependent Ventricular and Atrial Arrhythmias. International Journal of Molecular Sciences, 2020, 21, 2535.	1.8	9
111	SR-Mitochondria Crosstalk Shapes Ca Signalling to Impact Pathophenotype in Disease Models Marked by Dysregulated Intracellular Ca Release. Cardiovascular Research, 2022, 118, 2819-2832.	1.8	8
112	Contractile parameters and occurrence of alternans in isolated rat myocardium at supra-physiological stimulation frequency. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2267-H2275.	1.5	6
113	Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by Pl3K–AKT–nNOS signaling. Journal of Biological Chemistry, 2020, 295, 11720-11728.	1.6	6
114	Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium. BioMed Research International, 2015, 2015, 1-12.	0.9	5
115	Accentuated vagal antagonism paradoxically increases ryanodine receptor calcium leak in long-term exercised Calsequestrin2 knockout mice. Heart Rhythm, 2018, 15, 430-441.	0.3	5
116	Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts. Frontiers in Physiology, 2018, 9, 61.	1.3	5
117	Tetrodotoxinâ€Sensitive Neuronalâ€Type Na ⁺ Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation. Journal of the American Heart Association, 2020, 9, e015119.	1.6	5
118	Synchronization of Intracellular Ca2+ Release in Multicellular Cardiac Preparations. Frontiers in Physiology, 2018, 9, 968.	1.3	3
119	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	1.6	3
120	Adaptive control of intracellular Ca2+ release in C2C12 mouse myotubes. Pflugers Archiv European Journal of Physiology, 1996, 431, 838-843.	1.3	2
121	Engineering an Anti-Arrhythmic Calmodulin. Biophysical Journal, 2016, 110, 217a.	0.2	2
122	Structural and Molecular Bases of Sarcoplasmic Reticulum Ion Channel Function. , 2018, , 60-65.		0
123	Acute Detubulation of Ventricular Myocytes Amplifies the Inhibitory Effect of Cholinergic Agonist on Intracellular Ca2+ Transients. Frontiers in Physiology, 2021, 12, 725798.	1.3	0
124	Abstract 17019: Two Distinct mechanisms by which Na+/Ca2+ dysregulation contributes to Arrhythmogenic Diastolic Ca2+ Release. Circulation, 2014, 130, .	1.6	0
125	Neuronal Na + Channels as a Novel Cardiac Antiarrhythmic Target. FASEB Journal, 2015, 29, 1025.13.	0.2	0
126	Abstract 17344: Increasing Calcium-activated Potassium Current Shortens and Stabilizes Repolarization in Chronic Heart Failure. Circulation, 2015, 132, .	1.6	0

#	Article	IF	CITATIONS
127	Abstract 18111: Flecainide Exerts its Antiarrhythmic Action in CPVT Through Blockade of Neuronal Na+ channel-mediated Arrhythmogenic Diastolic Ca2+ Release. Circulation, 2015, 132, .	1.6	0
128	Abstract 17874: Aerobic Exercise Training Improves Exercise Capacity, Reduces Arrhythmia Susceptibility but Does Not Normalize Ryanodine Receptor Mediated Aberrant Calcium Release in Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2015, 132, .	1.6	0
129	Mutant D96V calmodulin induces unexpected remodeling of cardiac nanostructure and physiology. Journal of General Physiology, 2022, 154, .	0.9	0
130	Mitochondrial calpain inhibition restores defective SR-mitochondrial crosstalk in CPVT rat myocytes. Journal of General Physiology, 2022, 154, .	0.9	0