
Guoliang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10580225/publications.pdf Version: 2024-02-01

CHOLIANC XIL

#	Article	IF	CITATIONS
1	Chromobox 4 facilitates tumorigenesis of lung adenocarcinoma through the Wnt/β-catenin pathway. Neoplasia, 2021, 23, 222-233.	5.3	15
2	Muscle regeneration controlled by a designated DNA dioxygenase. Cell Death and Disease, 2021, 12, 535.	6.3	11
3	The 5-Hydroxymethylcytosine (5hmC) Reader UHRF2 Is Required for Normal Levels of 5hmC in Mouse Adult Brain and Spatial Learning and Memory. Journal of Biological Chemistry, 2017, 292, 4533-4543.	3.4	39
4	CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Research, 2017, 27, 815-829.	12.0	35
5	Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. Journal of Experimental Medicine, 2017, 214, 1471-1491.	8.5	81
6	Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of Mouse ESCs. Cell Reports, 2016, 15, 1809-1821.	6.4	67
7	Gadd45a is a heterochromatin relaxer that enhances <scp>iPS</scp> cell generation. EMBO Reports, 2016, 17, 1641-1656.	4.5	28
8	TET3 Inhibits Type I IFN Production Independent of DNA Demethylation. Cell Reports, 2016, 16, 1096-1105.	6.4	40
9	AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discovery, 2015, 1, 15017.	6.7	20
10	In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases. PLoS Genetics, 2012, 8, e1002750.	3.5	337
11	Tet3 CXXC Domain and Dioxygenase Activity Cooperatively Regulate Key Genes for Xenopus Eye and Neural Development. Cell, 2012, 151, 1200-1213.	28.9	227
12	Genome-wide Regulation of 5hmC, 5mC, and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells. Molecular Cell, 2011, 42, 451-464.	9.7	551
13	A Modified "Cross-talk―between Histone H2B Lys-120 Ubiquitination and H3 Lys-79 Methylation. Journal of Biological Chemistry, 2010, 285, 21868-21876.	3.4	57
14	Different Transcription Factors Regulate nestin Gene Expression during P19 Cell Neural Differentiation and Central Nervous System Development. Journal of Biological Chemistry, 2009, 284, 8160-8173.	3.4	85
15	Identification and Characterization of Propionylation at Histone H3 Lysine 23 in Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 32288-32295.	3.4	111
16	KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 2009, 461, 415-418.	27.8	465
17	The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 2009, 41, 125-129.	21.4	721
18	Atp6v0d2 Is an Essential Component of the Osteoclast-Specific Proton Pump That Mediates Extracellular Acidification in Bone Resorption. Journal of Bone and Mineral Research, 2009, 24, 871-885.	2.8	118

GUOLIANG XU

#	Article	IF	CITATIONS
19	Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts. Biochemical Journal, 2009, 417, 195-203.	3.7	79
20	ldentification of the Leukemia-Specific Domains of the CALM/AF10 Fusion Gene, a Product of the Leukemia Associated T(10;11) Translocation Blood, 2008, 112, 1800-1800.	1.4	0
21	Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochemical Journal, 2007, 405, 369-378.	3.7	86
22	Mechanism of Stimulation of Catalytic Activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. Journal of Biological Chemistry, 2005, 280, 13341-13348.	3.4	250
23	hDOT1L Links Histone Methylation to Leukemogenesis. Cell, 2005, 121, 167-178.	28.9	737