Hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10579966/publications.pdf

Version: 2024-02-01

168829 252626 3,354 47 31 46 citations h-index g-index papers 47 47 47 4988 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cathodic protected Mn2+ by NaxWO3 nanorods for stable magnetic resonance imaging-guided tumor photothermal therapy. Biomaterials, 2020, 234, 119762.	5.7	21
2	MAP4K4 negatively regulates CD8 T cell–mediated antitumor and antiviral immunity. Science Immunology, 2020, 5, .	5.6	18
3	RIP1 kinase activity is critical for skin inflammation but not for viral propagation. Journal of Leukocyte Biology, 2020, 107, 941-952.	1.5	34
4	DCE-MRI in Human Gliomas. Academic Radiology, 2019, 26, 179-187.	1.3	8
5	Application of MRS- and ASL-guided navigation for biopsy of intracranial tumors. Acta Radiologica, 2019, 60, 374-381.	0.5	8
6	Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Lowâ€Grade Gliomas Using Multiparametric MR Radiomic Features. Journal of Magnetic Resonance Imaging, 2019, 49, 808-817.	1.9	62
7	In Vivo MR Imaging of Glioma Recruitment of Adoptive Tâ€Cells Labeled with NaGdF ₄ â€ T AT Nanoprobes. Small, 2018, 14, 1702951.	5.2	26
8	Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561, 189-194.	13.7	244
9	A multifunctional nanotheranostic for the intelligent MRI diagnosis and synergistic treatment of hypoxic tumor. Biomaterials, 2018, 175, 123-133.	5.7	49
10	Harness the Power of Upconversion Nanoparticles for Spectral Computed Tomography Diagnosis of Osteosarcoma. Advanced Functional Materials, 2018, 28, 1802656.	7.8	30
11	Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Materials Horizons, 2018, 5, 946-952.	6.4	108
12	Exogenous Amino Acid‣oaded Nanovehicles: Stepping across Endogenous Magnetic Resonance Spectroscopy. Advanced Healthcare Materials, 2018, 7, 1800317.	3.9	3
13	Targeting Upconversion Nanoprobes for Magnetic Resonance Imaging of Early Colon Cancer. Particle and Particle Systems Characterization, 2017, 34, 1600393.	1.2	4
14	Interventional Treatment for Hepatic Artery Thrombosis after Liver Transplantation. Journal of Vascular and Interventional Radiology, 2017, 28, 1116-1122.	0.2	18
15	Magnetic Resonance Imaging Features of Solitary Hypothalamitis. Journal of Computer Assisted Tomography, 2017, 41, 190-194.	0.5	6
16	Antiferromagnetic Pyrite as the Tumor Microenvironmentâ€Mediated Nanoplatform for Selfâ€Enhanced Tumor Imaging and Therapy. Advanced Materials, 2017, 29, 1701683.	11.1	458
17	High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke. Small, 2016, 12, 3591-3600.	5.2	30
18	^{99m} Tc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale, 2016, 8, 19573-19580.	2.8	42

#	Article	IF	CITATIONS
19	Overexpression of microRNA-141 relieves chronic constriction injury-induced neuropathic pain via targeting high-mobility group box 1. International Journal of Molecular Medicine, 2015, 36, 1433-1439.	1.8	31
20	Aquaporin-1 water permeability as a novel determinant of axonal regeneration in dorsal root ganglion neurons. Experimental Neurology, 2015, 265, 152-159.	2.0	31
21	BaHoF 5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials, 2015, 71, 110-118.	5.7	34
22	Greatly improved survival and neuroprotection in aquaporinâ€4â€knockout mice following global cerebral ischemia. FASEB Journal, 2014, 28, 705-714.	0.2	75
23	Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-lgG in mice lacking complement inhibitor CD59. Journal of Autoimmunity, 2014, 53, 67-77.	3.0	51
24	C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathologica, 2013, 125, 829-840.	3.9	57
25	Response to "When can AQP4 assist transporter-mediated K+ uptake?― Journal of General Physiology, 2013, 142, 91-92.	0.9	0
26	Aquaporin-4–dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. Journal of General Physiology, 2013, 141, 119-132.	0.9	70
27	Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti–aquaporinâ€4 immunoglobulin G into therapeutic antibody. Annals of Neurology, 2013, 73, 77-85.	2.8	83
28	Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. Journal of Clinical Investigation, 2013, 123, 2306-2316.	3.9	111
29	A Small-molecule Screen Yields Idiotype-specific Blockers of Neuromyelitis Optica Immunoglobulin G Binding to Aquaporin-4. Journal of Biological Chemistry, 2012, 287, 36837-36844.	1.6	18
30	Smallâ€molecule inhibitors of NMOâ€lgG binding to aquaporinâ€4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB Journal, 2012, 26, 2197-2208.	0.2	76
31	Anti–Aquaporinâ€4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology, 2012, 71, 314-322.	2.8	232
32	Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathologica, 2012, 123, 861-872.	3.9	97
33	Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacologica Sinica, 2011, 32, 702-710.	2.8	79
34	Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Annals of Neurology, 2011, 70, 943-954.	2.8	142
35	Proinflammatory role of aquaporinâ€4 in autoimmune neuroinflammation. FASEB Journal, 2011, 25, 1556-1566.	0.2	159
36	Aquaporin-1 Tunes Pain Perception by Interaction with Nav1.8 Na+ Channels in Dorsal Root Ganglion Neurons. Journal of Biological Chemistry, 2010, 285, 5896-5906.	1.6	58

#	Article	IF	CITATIONS
37	Microfiberoptic Measurement of Extracellular Space Volume in Brain and Tumor Slices Based on Fluorescent Dye Partitioning. Biophysical Journal, 2010, 99, 1284-1291.	0.2	45
38	Very high aquaporin-1 facilitated water permeability in mouse gallbladder. American Journal of Physiology - Renal Physiology, 2009, 296, G816-G822.	1.6	30
39	Greatly attenuated experimental autoimmune encephalomyelitis in aquaporin-4 knockout mice. BMC Neuroscience, 2009, 10, 94.	0.8	55
40	Extracellular Space Volume Measured by Two-Color Pulsed Dye Infusion with Microfiberoptic Fluorescence Photodetection. Biophysical Journal, 2009, 96, 2382-2390.	0.2	27
41	PKCâ^Š-Dependent Potentiation of TTX-Resistant Na $<$ sub $>$ V $<$ /sub $>$ 1.8 Current by Neurokinin-1 Receptor Activation in Rat Dorsal Root Ganglion Neurons. Molecular Pain, 2009, 5, 1744-8069-5-33.	1.0	50
42	Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides. Bioorganic and Medicinal Chemistry, 2008, 16, 7489-7493.	1.4	73
43	Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Molecular and Cellular Neurosciences, 2008, 37, 1-10.	1.0	92
44	Evidence against Involvement of Aquaporin-4 in Cell–Cell Adhesion. Journal of Molecular Biology, 2008, 382, 1136-1143.	2.0	46
45	Impaired olfaction in mice lacking aquaporinâ€4 water channels. FASEB Journal, 2008, 22, 3216-3223.	0.2	93
46	Evidence against Functional Interaction between Aquaporin-4 Water Channels and Kir4.1 Potassium Channels in Retinal Mýller Cells. Journal of Biological Chemistry, 2007, 282, 21866-21872.	1.6	97
47	Neurokinin-1 Receptor Enhances TRPV1 Activity in Primary Sensory Neurons via PKClµ: A Novel Pathway for Heat Hyperalgesia. Journal of Neuroscience, 2007, 27, 12067-12077.	1.7	173