
Cristiana Cavina-Pratesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10576408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perceptual deficits of object identification: apperceptive agnosia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 151, 269-286.	1.8	9
2	Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex, 2018, 98, 128-148.	2.4	54
3	Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions. Cortex, 2016, 82, 244-254.	2.4	0
4	Coding of attention across the human intraparietal sulcus. Experimental Brain Research, 2016, 234, 917-930.	1.5	7
5	Representational content of occipitotemporal and parietal tool areas. Neuropsychologia, 2016, 84, 81-88.	1.6	30
6	Patient DF's visual brain in action: Visual feedforward control in visual form agnosia. Vision Research, 2015, 110, 265-276.	1.4	20
7	Neural correlates of object size and object location during grasping actions. European Journal of Neuroscience, 2015, 41, 454-465.	2.6	55
8	Reprint of: Visual processing of words in a patient with visual form agnosia: A behavioural and fMRI study. Cortex, 2015, 72, 97-114.	2.4	4
9	Visual processing of words in a patient with visual form agnosia: A behavioural and fMRI study. Cortex, 2015, 64, 29-46.	2.4	11
10	DF's visual brain in action: The role of tactile cues. Neuropsychologia, 2014, 55, 41-50.	1.6	38
11	Optic ataxia affects the lower limbs: Evidence from a single case study. Cortex, 2013, 49, 1229-1240.	2.4	11
12	Structural and Functional Changes across the Visual Cortex of a Patient with Visual Form Agnosia. Journal of Neuroscience, 2013, 33, 12779-12791.	3.6	62
13	Why do the eyes prefer the index finger? Simultaneous recording of eye and hand movements during precision grasping. Journal of Vision, 2013, 13, 15-15.	0.3	30
14	Optic ataxia as a model to investigate the role of the posterior parietal cortex in visually guided action: evidence from studies of patient M.H Frontiers in Human Neuroscience, 2013, 7, 336.	2.0	18
15	Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. Journal of Neurophysiology, 2012, 107, 1443-1456.	1.8	170
16	The Magic Grasp: Motor Expertise in Deception. PLoS ONE, 2011, 6, e16568.	2.5	48
17	Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. Journal of Neurophysiology, 2011, 106, 2248-2263.	1.8	93
18	Impaired grasping in a patient with optic ataxia: Primary visuomotor deficit or secondary consequence of misreaching?. Neuropsychologia, 2010, 48, 226-234.	1.6	57

#	Article	IF	CITATIONS
19	Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans. Journal of Neuroscience, 2010, 30, 10306-10323.	3.6	289
20	Dissociable Neural Responses to Hands and Non-Hand Body Parts in Human Left Extrastriate Visual Cortex. Journal of Neurophysiology, 2010, 103, 3389-3397.	1.8	142
21	Is That within Reach? fMRI Reveals That the Human Superior Parieto-Occipital Cortex Encodes Objects Reachable by the Hand. Journal of Neuroscience, 2009, 29, 4381-4391.	3.6	189
22	Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?. NeuroImage, 2007, 36, T94-T108.	4.2	116
23	FMRI Reveals a Dissociation between Grasping and Perceiving the Size of Real 3D Objects. PLoS ONE, 2007, 2, e424.	2.5	125
24	The role of parietal cortex in visuomotor control: What have we learned from neuroimaging?. Neuropsychologia, 2006, 44, 2668-2684.	1.6	413
25	Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2006, 26, 2704-2713.	3.6	95