Habeom Lee ## List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/10574143/habeom-lee-publications-by-year.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. | 49 | 2,795 | 24 | 52 | |-------------|----------------------|---------|-----------| | papers | citations | h-index | g-index | | 54 | 3,404 ext. citations | 10.1 | 5 | | ext. papers | | avg, IF | L-index | | # | Paper | IF | Citations | |----|--|-------------------------------|-----------| | 49 | Fabrication of Perforated PDMS Microchannel by Successive Laser Pyrolysis. <i>Materials</i> , 2021 , 14, | 3.5 | 2 | | 48 | From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates. <i>Advanced Materials</i> , 2021 , 33, e2008434 | 24 | 4 | | 47 | Imperceptible Soft Robotics: Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics (Adv. Mater. 19/2021). <i>Advanced Materials</i> , 2021 , 33, 2170147 | 24 | O | | 46 | Crack Programming: From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates (Adv. Mater. 22/2021). <i>Advanced Materials</i> , 2021 , 33, 2170175 | 24 | | | 45 | Digital Laser Micropainting for Reprogrammable Optoelectronic Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2006854 | 15.6 | 4 | | 44 | Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. <i>Advanced Materials</i> , 2021 , 33, e2002397 | 24 | 39 | | 43 | Digital Laser Micropainting: Digital Laser Micropainting for Reprogrammable Optoelectronic Applications (Adv. Funct. Mater. 1/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170002 | 15.6 | | | 42 | Wearable Electronics: Biocompatible Cost-Effective Electrophysiological Monitoring with Oxidation-Free CuAu CoreBhell Nanowire (Adv. Mater. Technol. 12/2020). <i>Advanced Materials Technologies</i> , 2020 , 5, 2070073 | 6.8 | 2 | | 41 | Wearable Temperature Sensors: Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration (Adv. Mater. 2/2020). <i>Advanced Materials</i> , 2020 , 32, 2070014 | 24 | 4 | | 40 | Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. <i>Advanced Materials</i> , 2020 , 32, e1905527 | 24 | 103 | | 39 | Biocompatible Cost-Effective Electrophysiological Monitoring with Oxidation-Free CuAu CoreBhell Nanowire. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000661 | 6.8 | 9 | | 38 | Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. <i>Science Advances</i> , 2019 , 5, eaav4916 | 14.3 | 15 | | 37 | Stretchable/flexible silver nanowire Electrodes for energy device applications. <i>Nanoscale</i> , 2019 , 11, 20 | 3 <i>5</i> ,6 7 20 | 37,86 | | 36 | Directional Shape Morphing Transparent Walking Soft Robot. Soft Robotics, 2019, 6, 760-767 | 9.2 | 19 | | 35 | Forced Circulation of Nitrogen Gas for Accelerated and Eco-Friendly Cooling of Metallic Parts. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 3679 | 2.6 | 3 | | 34 | Digitally patterned resistive micro heater as a platform for zinc oxide nanowire based micro sensor. <i>Applied Surface Science</i> , 2018 , 447, 1-7 | 6.7 | 14 | | 33 | Perspective Brief Perspective on the Fabrication of Hierarchical Nanostructure for Solar Water Splitting Photoelectrochemical Cells. <i>ECS Journal of Solid State Science and Technology</i> , 2018 , 7, Q131-0 | Q 7 35 | 1 | ## (2016-2018) | 32 | ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation. <i>Nanomaterials</i> , 2018 , 8, | 5.4 | 9 | |----|---|------|-----| | 31 | A Transparent and Flexible Capacitive-Force Touch Pad from High-Aspect-Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. <i>Small Methods</i> , 2018 , 2, 1800077 | 12.8 | 29 | | 30 | Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. <i>Advanced Functional Materials</i> , 2018 , 28, 1801847 | 15.6 | 135 | | 29 | Recent progress in silver nanowire based flexible/wearable optoelectronics. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7445-7461 | 7.1 | 88 | | 28 | Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. <i>Materials</i> , 2018 , 11, | 3.5 | 3 | | 27 | Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. <i>Nanomaterials</i> , 2018 , 8, | 5.4 | 12 | | 26 | Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. <i>Scientific Reports</i> , 2017 , 7, 41981 | 4.9 | 162 | | 25 | Highly Controlled Nanoporous Ag Electrode by Vaporization Control of 2-Ethoxyethanol for a Flexible Supercapacitor Application. <i>Langmuir</i> , 2017 , 33, 1854-1860 | 4 | 6 | | 24 | Flexible and Transparent Cu Electronics by Low-Temperature Acid-Assisted Laser Processing of Cu Nanoparticles. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600222 | 6.8 | 39 | | 23 | High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. <i>Nano Letters</i> , 2017 , 17, 4339-4346 | 11.5 | 121 | | 22 | Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 791-798 | 7.1 | 44 | | 21 | Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires. <i>ACS Nano</i> , 2017 , 11, 12311-12317 | 16.7 | 29 | | 20 | Selective Thermochemical Growth of Hierarchical ZnO Nanowire Branches on Silver Nanowire Backbone Percolation Network Heaters. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22542-22549 | 3.8 | 12 | | 19 | Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 44609-44616 | 9.5 | 187 | | 18 | Large-Area Compatible Laser Sintering Schemes with a Spatially Extended Focused Beam. <i>Micromachines</i> , 2017 , 8, 153 | 3.3 | 8 | | 17 | Rapid and Effective Electrical Conductivity Improvement of the Ag NW-Based Conductor by Using the Laser-Induced Nano-Welding Process. <i>Micromachines</i> , 2017 , 8, 164 | 3.3 | 13 | | 16 | Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600277 | 6.4 | 39 | | 15 | Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor. <i>RSC Advances</i> , 2016 , 6, 57434-57440 | 3.7 | 50 | | 14 | Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability. <i>ACS Applied Materials & Discrete Stability</i> . | 9.5 | 173 | |----|--|----------------------|-----------------| | 13 | Photoreduction Synthesis of Hierarchical Hematite/Silver Nanostructures for Photoelectrochemical Water Splitting. <i>Energy Technology</i> , 2016 , 4, 271-277 | 3.5 | 9 | | 12 | Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. <i>ACS Applied Materials & Discourse (Continue of Continue Co</i> | 9.5 | 122 | | 11 | Digital selective laser methods for nanomaterials: From synthesis to processing. <i>Nano Today</i> , 2016 , 11, 547-564 | 17.9 | 64 | | 10 | Facile Photoreduction Process for ZnO/Ag Hierarchical Nanostructured Photoelectrochemical Cell Integrated with Supercapacitor. <i>ECS Journal of Solid State Science and Technology</i> , 2015 , 4, P424-P428 | 2 | 10 | | 9 | Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 2317-23 | 1.3 | 74 | | 8 | Control and Manipulation of Nano Cracks Mimicking Optical Wave. Scientific Reports, 2015, 5, 17292 | 4.9 | 10 | | 7 | Highly stretchable and transparent metal nanowire heater for wearable electronics applications. <i>Advanced Materials</i> , 2015 , 27, 4744-51 | 24 | 541 | | 6 | All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers.
Journal of Materials Chemistry A, 2015 , 3, 8339-8345 | 13 | 57 | | 5 | Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design. <i>ACS Nano</i> , 2015 , 9, 6059-68 | 16.7 | 64 | | 4 | Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. <i>Small</i> , 2014 , 10, 5015-22 | 11 | 8 | | 3 | Nanoscale Heaters: Single Nanowire Resistive Nano-heater for Highly Localized Thermo-Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth (Small 24/2014). <i>Small</i> , 2014 , 10, 50 | 14 ⁻¹ 501 | 4 ³⁰ | | 2 | Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. <i>Nanoscale Research Letters</i> , 2013 , 8, 489 | 5 | 42 | | 1 | Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. <i>ACS Nano</i> , 2013 , 7, 5024-31 | 16.7 | 327 |