
Habeom Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10574143/publications.pdf Version: 2024-02-01

HARFOMLEE

#	Article	IF	CITATIONS
1	Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Advanced Materials, 2015, 27, 4744-4751.	11.1	667
2	Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano, 2013, 7, 5024-5031.	7.3	389
3	Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 44609-44616.	4.0	270
4	Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability. ACS Applied Materials & Interfaces, 2016, 8, 15449-15458.	4.0	243
5	Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Advanced Materials, 2020, 32, e1905527.	11.1	221
6	Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Scientific Reports, 2017, 7, 41981.	1.6	212
7	Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. Advanced Functional Materials, 2018, 28, 1801847.	7.8	198
8	High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Letters, 2017, 17, 4339-4346.	4.5	196
9	Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. ACS Applied Materials & Interfaces, 2016, 8, 11575-11582.	4.0	160
10	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	11.1	131
11	Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 2018, 6, 7445-7461.	2.7	125
12	Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today, 2016, 11, 547-564.	6.2	118
13	Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale, 2019, 11, 20356-20378.	2.8	90
14	Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel. Journal of Nanoscience and Nanotechnology, 2015, 15, 2317-2323.	0.9	83
15	Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design. ACS Nano, 2015, 9, 6059-6068.	7.3	82
16	All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. Journal of Materials Chemistry A, 2015, 3, 8339-8345.	5.2	68
17	Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering. Advanced Electronic Materials, 2016, 2, 1600277.	2.6	63
18	Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor. RSC Advances, 2016, 6, 57434-57440.	1.7	60

Навеом Lee

#	Article	IF	CITATIONS
19	Flexible and Transparent Cu Electronics by Lowâ€Temperature Acidâ€Assisted Laser Processing of Cu Nanoparticles. Advanced Materials Technologies, 2017, 2, 1600222.	3.0	59
20	Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. Journal of Materials Chemistry C, 2017, 5, 791-798.	2.7	52
21	Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters, 2013, 8, 489.	3.1	51
22	A Transparent and Flexible Capacitiveâ€Force Touch Pad from Highâ€Aspectâ€Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods, 2018, 2, 1800077.	4.6	45
23	Directional Shape Morphing Transparent Walking Soft Robot. Soft Robotics, 2019, 6, 760-767.	4.6	45
24	Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires. ACS Nano, 2017, 11, 12311-12317.	7.3	36
25	Nanoscale Heaters: Single Nanowire Resistive Nanoâ€heater for Highly Localized Thermoâ€Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth (Small 24/2014). Small, 2014, 10, 5014-5014.	5.2	34
26	Biocompatible Costâ€Effective Electrophysiological Monitoring with Oxidationâ€Free Cu–Au Core–Shell Nanowire. Advanced Materials Technologies, 2020, 5, 2000661.	3.0	33
27	Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. Science Advances, 2019, 5, eaav4916.	4.7	26
28	Digitally patterned resistive micro heater as a platform for zinc oxide nanowire based micro sensor. Applied Surface Science, 2018, 447, 1-7.	3.1	24
29	ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation. Nanomaterials, 2018, 8, 323.	1.9	16
30	Selective Thermochemical Growth of Hierarchical ZnO Nanowire Branches on Silver Nanowire Backbone Percolation Network Heaters. Journal of Physical Chemistry C, 2017, 121, 22542-22549.	1.5	15
31	Rapid and Effective Electrical Conductivity Improvement of the Ag NW-Based Conductor by Using the Laser-Induced Nano-Welding Process. Micromachines, 2017, 8, 164.	1.4	15
32	Control and Manipulation of Nano Cracks Mimicking Optical Wave. Scientific Reports, 2015, 5, 17292.	1.6	14
33	Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Nanomaterials, 2018, 8, 645.	1.9	14
34	From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates. Advanced Materials, 2021, 33, e2008434.	11.1	13
35	Single Nanowire Resistive Nanoâ€heater for Highly Localized Thermoâ€Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth. Small, 2014, 10, 5015-5022.	5.2	12
36	Large-Area Compatible Laser Sintering Schemes with a Spatially Extended Focused Beam. Micromachines, 2017, 8, 153.	1.4	11

Habeom Lee

#	Article	IF	CITATIONS
37	Digital Laser Micropainting for Reprogrammable Optoelectronic Applications. Advanced Functional Materials, 2021, 31, .	7.8	11
38	Facile Photoreduction Process for ZnO/Ag Hierarchical Nanostructured Photoelectrochemical Cell Integrated with Supercapacitor. ECS Journal of Solid State Science and Technology, 2015, 4, P424-P428.	0.9	10
39	Photoreduction Synthesis of Hierarchical Hematite/Silver Nanostructures for Photoelectrochemical Water Splitting. Energy Technology, 2016, 4, 271-277.	1.8	10
40	Wearable Temperature Sensors: Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration (Adv. Mater. 2/2020). Advanced Materials, 2020, 32, 2070014.	11.1	9
41	Fabrication of Perforated PDMS Microchannel by Successive Laser Pyrolysis. Materials, 2021, 14, 7275.	1.3	9
42	Highly Controlled Nanoporous Ag Electrode by Vaporization Control of 2-Ethoxyethanol for a Flexible Supercapacitor Application. Langmuir, 2017, 33, 1854-1860.	1.6	8
43	Electrodeposition of the MnO2 on the Ag/Au Core–Shell Nanowire and Its Application to the Flexible Supercapacitor. Materials, 2021, 14, 3934.	1.3	5
44	Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Materials, 2018, 11, 2511.	1.3	4
45	Forced Circulation of Nitrogen Gas for Accelerated and Eco-Friendly Cooling of Metallic Parts. Applied Sciences (Switzerland), 2019, 9, 3679.	1.3	3
46	Wearable Electronics: Biocompatible Costâ€Effective Electrophysiological Monitoring with Oxidationâ€Free Cu–Au Core–Shell Nanowire (Adv. Mater. Technol. 12/2020). Advanced Materials Technologies, 2020, 5, 2070073.	3.0	3
47	Imperceptible Soft Robotics: Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics (Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170147.	11.1	3
48	Perspective—A Brief Perspective on the Fabrication of Hierarchical Nanostructure for Solar Water Splitting Photoelectrochemical Cells. ECS Journal of Solid State Science and Technology, 2018, 7, Q131-Q135.	0.9	1
49	Digital Laser Micropainting: Digital Laser Micropainting for Reprogrammable Optoelectronic Applications (Adv. Funct. Mater. 1/2021). Advanced Functional Materials, 2021, 31, 2170002.	7.8	0
50	Crack Programming: From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates (Adv. Mater. 22/2021). Advanced Materials, 2021, 33, 2170175.	11.1	0