Fernando G De Mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10573828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Essential Role for Alzheimer's-Linked Amyloid Beta Oligomers in Neurodevelopment: Transient Expression of Multiple Proteoforms during Retina Histogenesis. International Journal of Molecular Sciences, 2022, 23, 2208.	4.1	5
2	A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer'sâ€associated pathologies. Journal of Neurochemistry, 2019, 148, 822-836.	3.9	20
3	Neuro-glial cannabinoid receptors modulate signaling in the embryonic avian retina. Neurochemistry International, 2018, 112, 27-37.	3.8	12
4	Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System. Frontiers in Cellular Neuroscience, 2018, 12, 58.	3.7	12
5	Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. Journal of Biological Chemistry, 2015, 290, 20488-20498.	3.4	22
6	Exogenous β-amyloid peptide interferes with GLUT4 localization in neurons. Brain Research, 2015, 1615, 42-50.	2.2	12
7	Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input. Neurochemistry International, 2015, 82, 42-51.	3.8	16
8	Reply to Altered Monoaminergic Systems and Depressive-like Behavior in Congenic Prion Protein Knock-out Mice. Journal of Biological Chemistry, 2015, 290, 26351.	3.4	4
9	Neurochemical plasticity of Müller cells after retinal injury: overexpression of GAT-3 may potentiate excitotoxicity. Neural Regeneration Research, 2015, 10, 1376.	3.0	3
10	Murine dopaminergic Müller cells restore motor function in a model of Parkinson's disease. Journal of Neurochemistry, 2014, 128, 829-840.	3.9	17
11	Pituitary adenylyl cyclaseâ€activating polypeptide receptor reâ€sensitization induces plastic changes in the dopaminergic phenotype in the mature avian retina. Journal of Neurochemistry, 2013, 124, 621-631.	3.9	5
12	Inhibition of Choline Acetyltransferase as a Mechanism for Cholinergic Dysfunction Induced by Amyloid-β Peptide Oligomers. Journal of Biological Chemistry, 2012, 287, 19377-19385.	3.4	77
13	βâ€amyloid peptide is internalized into chick retinal neurons and alters the distribution of myosin Vb. Cytoskeleton, 2012, 69, 166-178.	2.0	1
14	Exchange of extracellular l-glutamate by intracellular d-aspartate: The main mechanism of d-aspartate release in the avian retina. Neurochemistry International, 2011, 58, 767-775.	3.8	7
15	Amyloid-β Decreases Nitric Oxide Production in Cultured Retinal Neurons: A Possible Mechanism for Synaptic Dysfunction in Alzheimer's Disease?. Neurochemical Research, 2011, 36, 163-169.	3.3	23
16	Expression of functional dopaminergic phenotype in purified cultured Müller cells from vertebrate retina. Neurochemistry International, 2008, 53, 63-70.	3.8	30
17	Dopaminergic signaling in the developing retina. Brain Research Reviews, 2007, 54, 181-188.	9.0	69
18	Cultured Embryonic Retina Systems as a Model for the Study of Underlying Mechanisms of Toxoplasma		7

gondiiInfection. , 2004, 45, 2813.

7

Fernando G De Mello

#	Article	IF	CITATIONS
19	l-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. Journal of Neurochemistry, 2004, 86, 45-54.	3.9	41
20	Taurine prevents the neurotoxicity of βâ€amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disorders. FASEB Journal, 2004, 18, 511-518.	0.5	214
21	Neuroprotection against AÎ ² and glutamate toxicity by melatonin: Are GABA receptors involved?. Neurotoxicity Research, 2003, 5, 323-327.	2.7	47
22	Regulation of acetylcholine synthesis and storage. Neurochemistry International, 2002, 41, 291-299.	3.8	100
23	Sympathetic neuronal survival induced by retinal trophic factors. Journal of Neurobiology, 2002, 50, 13-23.	3.6	30
24	Evidence for an Antiapoptotic Role of Dopamine in Developing Retinal Tissue. Journal of Neurochemistry, 2002, 73, 485-492.	3.9	43
25	Regulation of vesicular acetylcholine transporter by the activation of excitatory amino acid receptors in the avian retina. Cellular and Molecular Neurobiology, 2002, 22, 727-740.	3.3	6
26	Dual role of glutamatergic neurotransmission on amyloid β1–42 aggregation and neurotoxicity in embryonic avian retina. Neuroscience Letters, 2001, 301, 59-63.	2.1	26
27	Inhibition of choline acetyltransferase by excitatory amino acids as a possible mechanism for cholinergic dysfunction in the central nervous system. Journal of Neurochemistry, 2001, 77, 1136-1144.	3.9	13
28	Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature, 2000, 403, 199-203.	27.8	426
29	Transporter-mediated GABA release induced by excitatory amino acid agonist is associated with GAD-67 but not GAD-65 immunoreactive cells of the primate retina. Brain Research, 2000, 863, 132-142.	2.2	25
30	Direct inhibition of the N -methyl-D -aspartate receptor channel by dopamine and (+)-SKF38393. British Journal of Pharmacology, 1999, 126, 1847-1855.	5.4	61
31	GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. International Journal of Developmental Neuroscience, 1999, 17, 201-213.	1.6	49
32	Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Neurochemistry International, 1998, 32, 47-52.	3.8	48
33	Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells. European Journal of Pharmacology, 1998, 343, 103-110.	3.5	18
34	Stable Complexes Involving Acetylcholinesterase and Amyloid-β Peptide Change the Biochemical Properties of the Enzyme and Increase the Neurotoxicity of Alzheimer's Fibrils. Journal of Neuroscience, 1998, 18, 3213-3223.	3.6	264
35	Differentiation of the GABAergic System in the Avian Retina: Control of Glutamic Acid Decarboxylase Expression by GABA. , 1992, , 36-48.		0
36	Glutamic acid decarboxylase of embryonic avian retina cells in culture: Regulation byγ-aminobutyric acid (GABA). Cellular and Molecular Neurobiology, 1991, 11, 485-496.	3.3	18

Fernando G De Mello

#	Article	IF	CITATIONS
37	Effect of p-mercuribenzoate on the subestimation of angiotensin-converting enzyme measurement during chick retina development. Journal of Neuroscience Methods, 1990, 31, 7-11.	2.5	5
38	In ovo and in culture development of chick retinal angiotensin converting enzyme. Neuroscience Letters, 1990, 109, 174-179.	2.1	5
39	Developmental immunoreactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis. Brain Research, 1990, 532, 197-202.	2.2	65
40	l-Glutamate evoked release of GABA from cultured avian retina cells does not require glutamate receptor activation. Brain Research, 1988, 443, 166-172.	2.2	24
41	A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neuroscience Letters, 1987, 75, 169-174.	2.1	87
42	Ontogenesis of prolyl endopeptidase in the chick retina. Neuroscience Letters, 1987, 80, 89-94.	2.1	8
43	Induced Release of ?-Aminobutyric Acid by a Carrier-Mediated, High-Affinity Uptake of L-Glutamate in Cultured Chick Retina Cells. Journal of Neurochemistry, 1985, 45, 1820-1827.	3.9	59
44	Screening for neuropeptide-metabolizing peptidases during the differentiation of chick embryo retina. Developmental Brain Research, 1985, 21, 147-151.	1.7	6
45	GABA-mediated control of glutamate decarboxylase (GAD) in cell aggregate culture of chick embryo retina. Developmental Brain Research, 1984, 14, 7-13.	1.7	36
46	Differential ontogenesis of D1 and D2 dopaminergic receptors in the chick embryo retina. Developmental Brain Research, 1984, 12, 217-223.	1.7	55