Atsuhiko Kawamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10573684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Potential of Ex Vivo Expanded Endothelial Progenitor Cells for Myocardial Ischemia. Circulation, 2001, 103, 634-637.	1.6	1,154
2	Stromal Cell–Derived Factor-1 Effects on Ex Vivo Expanded Endothelial Progenitor Cell Recruitment for Ischemic Neovascularization. Circulation, 2003, 107, 1322-1328.	1.6	1,072
3	Intramyocardial Transplantation of Autologous Endothelial Progenitor Cells for Therapeutic Neovascularization of Myocardial Ischemia. Circulation, 2003, 107, 461-468.	1.6	625
4	HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. Journal of Clinical Investigation, 2001, 108, 399-405.	8.2	587
5	Intramyocardial Transplantation of Autologous CD34 ⁺ Stem Cells for Intractable Angina. Circulation, 2007, 115, 3165-3172.	1.6	516
6	Endothelial progenitor cells for postnatal vasculogenesis. American Journal of Physiology - Cell Physiology, 2004, 287, C572-C579.	4.6	460
7	Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine. Stem Cells, 2011, 29, 1650-1655.	3.2	375
8	CD34-Positive Cells Exhibit Increased Potency and Safety for Therapeutic Neovascularization After Myocardial Infarction Compared With Total Mononuclear Cells. Circulation, 2006, 114, 2163-2169.	1.6	325
9	Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nature Medicine, 2005, 11, 1197-1204.	30.7	286
10	Dose-Dependent Contribution of CD34-Positive Cell Transplantation to Concurrent Vasculogenesis and Cardiomyogenesis for Functional Regenerative Recovery After Myocardial Infarction. Circulation, 2006, 113, 1311-1325.	1.6	285
11	Intramuscular Transplantation of G-CSF-Mobilized CD34+ Cells in Patients With Critical Limb Ischemia: A Phase I/IIa, Multicenter, Single-Blinded, Dose-Escalation Clinical Trial. Stem Cells, 2009, 27, 2857-2864.	3.2	223
12	Therapeutic Potential of Vasculogenesis and Osteogenesis Promoted by Peripheral Blood CD34-Positive Cells for Functional Bone Healing. American Journal of Pathology, 2006, 169, 1440-1457.	3.8	204
13	Estradiol Enhances Recovery After Myocardial Infarction by Augmenting Incorporation of Bone Marrow–Derived Endothelial Progenitor Cells Into Sites of Ischemia-Induced Neovascularization via Endothelial Nitric Oxide Synthase–Mediated Activation of Matrix Metalloproteinase-9. Circulation, 2006 113 1605-1614	1.6	187
14	Stem Cell Transplantation in Amyotrophic Lateral Sclerosis Patients: Methodological Approach, Safety, and Feasibility. Cell Transplantation, 2012, 21, 1899-1907.	2.5	157
15	Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008, 43, 434-439.	2.9	139
16	Ischemic Preconditioning Upregulates Vascular Endothelial Growth Factor mRNA Expression and Neovascularization via Nuclear Translocation of Protein Kinase C Îμ in the Rat Ischemic Myocardium. Circulation Research, 2001, 88, 696-704.	4.5	115
17	Specific Jagged-1 Signal From Bone Marrow Microenvironment Is Required for Endothelial Progenitor Cell Development for Neovascularization. Circulation, 2008, 118, 157-165.	1.6	115
18	Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies.	1.7	109

Атѕиніко Каwамото

#	Article	IF	CITATIONS
19	Synergistic Effect of Bone Marrow Mobilization and Vascular Endothelial Growth Factor-2 Gene Therapy in Myocardial Ischemia. Circulation, 2004, 110, 1398-1405.	1.6	107
20	Fracture induced mobilization and incorporation of bone marrowâ€derived endothelial progenitor cells for bone healing. Journal of Cellular Physiology, 2008, 215, 234-242.	4.1	105
21	Endothelial Progenitor Cells for Cardiovascular Regeneration. Trends in Cardiovascular Medicine, 2008, 18, 33-37.	4.9	102
22	CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow. PLoS ONE, 2011, 6, e20219.	2.5	101
23	Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovascular Radiation Medicine, 2002, 3, 221-225.	0.6	92
24	Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Laboratory Investigation, 2010, 90, 637-649.	3.7	84
25	Bone Marrow as a Source of Endothelial Cells for Natural and Iatrogenic Vascular Repair. Annals of the New York Academy of Sciences, 2001, 953a, 75-84.	3.8	77
26	Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. Journal of Bone and Mineral Research, 2012, 27, 1118-1131.	2.8	77
27	Niche-Dependent Translineage Commitment of Endothelial Progenitor Cells, Not Cell Fusion in General, Into Myocardial Lineage Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1388-1394.	2.4	76
28	Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis, 2012, 224, 440-445.	0.8	75
29	SDF-1/CXCR4 Axis in Tie2-Lineage Cells Including Endothelial Progenitor Cells Contributes to Bone Fracture Healing. Journal of Bone and Mineral Research, 2015, 30, 95-105.	2.8	72
30	Local Delivery of Granulocyte Colony Stimulating Factor-Mobilized CD34-Positive Progenitor Cells Using Bioscaffold for Modality of Unhealing Bone Fracture. Stem Cells, 2008, 26, 1395-1405.	3.2	71
31	Administrations of Peripheral Blood CD34-Positive Cells Contribute to Medial Collateral Ligament Healing via Vasculogenesis. Stem Cells, 2008, 26, 819-830.	3.2	66
32	Development of Serum-Free Quality and Quantity Control Culture of Colony-Forming Endothelial Progenitor Cell for Vasculogenesis. Stem Cells Translational Medicine, 2012, 1, 160-171.	3.3	64
33	Stem cell-based peripheral vascular regeneration. Advanced Drug Delivery Reviews, 2017, 120, 25-40.	13.7	64
34	Vasculogenic Conditioning of Peripheral Blood Mononuclear Cells Promotes Endothelial Progenitor Cell Expansion and Phenotype Transition of Antiâ€inflammatory Macrophage and T Lymphocyte to Cells With Regenerative Potential. Journal of the American Heart Association, 2014, 3, e000743.	3.7	56
35	Pivotal Role of Lnk Adaptor Protein in Endothelial Progenitor Cell Biology for Vascular Regeneration. Circulation Research, 2009, 104, 969-977.	4.5	54
36	Synergistic effect of adipose-derived stem cell therapy and bone marrow progenitor recruitment in ischemic heart. Laboratory Investigation, 2011, 91, 539-552.	3.7	52

Ατςυμικό Καωαμότο

#	Article	IF	CITATIONS
37	Differential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularization. Journal of Molecular and Cellular Cardiology, 2011, 51, 308-317.	1.9	50
38	Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction. International Journal of Cardiology, 1998, 67, 47-54.	1.7	48
39	Phase II Clinical Trial of CD34+ Cell Therapy to Explore Endpoint Selection and Timing in Patients With Critical Limb Ischemia. Circulation Journal, 2014, 78, 490-501.	1.6	46
40	Lnk Deletion Reinforces the Function of Bone Marrow Progenitors in Promoting Neovascularization and Astrogliosis Following Spinal Cord Injury. Stem Cells, 2010, 28, 365-375.	3.2	40
41	Local Transplantation of G-CSF-Mobilized CD34+ Cells in a Patient with Tibial Nonunion: A Case Report. Cell Transplantation, 2011, 20, 1491-1496.	2.5	40
42	Local Transplantation of Granulocyte Colony Stimulating Factor-Mobilized CD34+ Cells for Patients With Femoral and Tibial Nonunion: Pilot Clinical Trial. Stem Cells Translational Medicine, 2014, 3, 128-134.	3.3	40
43	Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease1. European Journal of Cardio-thoracic Surgery, 2004, 26, 137-143.	1.4	34
44	Regenerative treatment for tympanic membrane perforation using gelatin sponge with basic fibroblast growth factor. Auris Nasus Larynx, 2017, 44, 664-671.	1.2	34
45	Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. Journal of the Neurological Sciences, 2013, 328, 41-50.	0.6	32
46	Endothelial Progenitor Cells Promote Astrogliosis following Spinal Cord Injury through Jagged1-Dependent Notch Signaling. Journal of Neurotrauma, 2012, 29, 1758-1769.	3.4	31
47	Lnk-dependent axis of SCF–cKit signal for osteogenesis in bone fracture healing. Journal of Experimental Medicine, 2010, 207, 2207-2223.	8.5	25
48	Contribution of bone marrowâ€derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. Journal of Neuroscience Research, 2012, 90, 2281-2292.	2.9	23
49	Improvement of Cardiac Stem Cell Sheet Therapy for Chronic Ischemic Injury by Adding Endothelial Progenitor Cell Transplantation: Analysis of Layer-Specific Regional Cardiac Function. Cell Transplantation, 2014, 23, 1305-1319.	2.5	23
50	Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine, 2020, 57, 102862.	6.1	22
51	Therapeutic Potential of Unrestricted Somatic Stem Cells Isolated from Placental Cord Blood for Cardiac Repair Post Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1830-1835.	2.4	21
52	<scp>CD</scp> 34 ⁺ cell therapy is safe and effective in slowing the decline of hepatic reserve function in patients with decompensated liver cirrhosis. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1830-1838.	2.8	21
53	Autologous Granulocyte Colony-Stimulating Factor-Mobilized Peripheral Blood CD34 Positive Cell Transplantation for Hemodialysis Patients with Critical Limb Ischemia: A Prospective Phase II Clinical Trial. Stem Cells Translational Medicine, 2018, 7, 774-782.	3.3	21
54	Human peripheral blood CD34â€positive cells enhance therapeutic regeneration of chronically injured liver in nude rats. Journal of Cellular Physiology, 2012, 227, 1538-1552.	4.1	20

Атѕиніко Каwамото

#	Article	IF	CITATIONS
55	Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion following Bone Fracture. Cell Transplantation, 2015, 24, 1379-1393.	2.5	20
56	Sonic Hedgehog signaling regulates vascular differentiation and function in human CD34 positive cells. Stem Cell Research, 2015, 14, 165-176.	0.7	19
57	Synchrotron Radiation Coronary Microangiography for Morphometric and Physiological Evaluation of Myocardial Neovascularization Induced by Endothelial Progenitor Cell Transplantation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1326-1333.	2.4	18
58	Autologous CD34+ Cell Therapy for Ischemic Tissue Repair. Circulation Journal, 2019, 83, 1422-1430.	1.6	18
59	Local Transplantation of Ex Vivo Expanded Bone Marrow-Derived CD34-Positive Cells Accelerates Fracture Healing. Cell Transplantation, 2012, 21, 2689-2709.	2.5	16
60	Estimation of coronary flow reserve by intracoronary administration of nicorandil: comparison with intracoronary administration of papaverine. Heart and Vessels, 1998, 13, 229-236.	1.2	14
61	Biological Revascularization and the Interventional Molecular Cardiologist. Circulation, 2002, 106, 3002-3005.	1.6	14
62	Human Cardiac Stem Cells With Reduced Notch Signaling Show Enhanced Therapeutic Potential in a Rat Acute Infarction Model. Circulation Journal, 2014, 78, 222-231.	1.6	13
63	Local Transplantation of Granulocyte Colony-Stimulating Factor-Mobilized Human Peripheral Blood Mononuclear Cells for Unhealing Bone Fractures. Cell Transplantation, 2012, 21, 707-721.	2.5	11
64	A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization. Laboratory Investigation, 2013, 93, 1036-1053.	3.7	10
65	Ex vivo expansion of circulating CD34+ cells enhances the regenerative effect on rat liver cirrhosis. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16025.	4.1	8
66	Vascular endothelial growth factor mRNA synthesis by peripheral blood mononuclear cells in patients with acute myocardial infarction. International Journal of Cardiology, 2001, 81, 51-60.	1.7	7
67	Multicenter phase III trial of regenerative treatment for chronic tympanic membrane perforation. Auris Nasus Larynx, 2021, 48, 1054-1060.	1.2	7
68	Pre-Clinical Proof of Concept: Intra-Carotid Injection of Autologous CD34-Positive Cells for Chronic Ischemic Stroke. Frontiers in Medicine, 2022, 9, 681316.	2.6	3
69	Angiogenesis in Myocardial Ischemia. , 2013, , 261-283.		2
70	A Histopathological Study of Ageâ€related Changes of the Left Bundle Branch in the Human Heart. Pathology International, 1991, 41, 730-736.	1.3	1
71	Cell-Based Therapies for Peripheral Arterial Disease. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	1

72 Granulocyte Colony-Stimulating Factor. , 2017, , 191-216.

#	Article	IF	CITATIONS
73	Transplantation of Endothelial Progenitor Cells for Therapeutic Neovascularization. , 2003, , 31-41.		1
74	Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases. , 2013, , 881-900.		0
75	Vascular Regeneration Therapy: Endothelial Progenitor Cells for Ischemic Diseases. , 2016, , 35-57.		О
76	Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases. , 2011, , 731-744.		0