Raimund Koerver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10573572/publications.pdf

Version: 2024-02-01

20 papers

4,582 citations

20 h-index 752698 20 g-index

20 all docs

docs citations

20

times ranked

20

3189 citing authors

#	Article	IF	CITATIONS
1	Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270.	39.5	662
2	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2017, 29, 5574-5582.	6.7	655
3	Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy and Environmental Science, 2018, 11, 2142-2158.	30.8	512
4	Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 17835-17845.	8.0	353
5	Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li _{6+<i>x</i>} P _{1–<i>x</i>} Ge _{<i>x</i>} S ₅ 1for All-Solid-State Batteries. Journal of the American Chemical Society, 2018, 140, 16330-16339.	13.7	331
6	The Detrimental Effects of Carbon Additives in Li ₁₀ GeP ₂ S ₁₂ -Based Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 35888-35896.	8.0	257
7	Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. Chemistry of Materials, 2019, 31, 3745-3755.	6.7	246
8	(Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 9929-9936.	10.3	222
9	On the Functionality of Coatings for Cathode Active Materials in Thiophosphateâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2019, 9, 1900626.	19.5	221
10	Redox-active cathode interphases in solid-state batteries. Journal of Materials Chemistry A, 2017, 5, 22750-22760.	10.3	206
11	High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors. IScience, 2019, 16, 270-282.	4.1	142
12	Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2019, 31, 8328-8337.	6.7	138
13	Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries. Chemistry of Materials, 2018, 30, 4179-4192.	6.7	131
14	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li–S Batteries. Chemistry of Materials, 2019, 31, 2930-2940.	6.7	112
15	Competing Structural Influences in the Li Superionic Conducting Argyrodites Li ₆ PS _{5–<i>x</i>} Se <i>_{<i>x</i>}</i> Br (0 ≤i>x ≶) upon Se Substitution. Inorganic Chemistry, 2018, 57, 13920-13928.	4.0	82
16	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	7.4	73
17	Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries. ACS Applied Materials & Solid-State Batteries. ACS Applied Materials & Solid-State Batteries. ACS Applied Materials & Solid-State Batteries.	8.0	73
18	Spectroscopic characterization of lithium thiophosphates by XPS and XAS – a model to help monitor interfacial reactions in all-solid-state batteries. Physical Chemistry Chemical Physics, 2018, 20, 20088-20095.	2.8	65

#	Article	IF	CITATIONS
19	Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100654.	19.5	64
20	Macroscopic Displacement Reaction of Copper Sulfide in Lithium Solidâ€State Batteries. Advanced Energy Materials, 2020, 10, 2002394.	19.5	37