
Petr Galuszka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants. Biomolecules, 2021, 11, 24.	1.8	21
2	Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches. Frontiers in Plant Science, 2018, 9, 1676.	1.7	79
3	Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Current Genetics, 2018, 64, 1303-1319.	0.8	22
4	Blue light suppression alters cytokinin homeostasis in wheat leaves senescing under shading stress. Plant Physiology and Biochemistry, 2018, 130, 647-657.	2.8	11
5	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	1.7	30
6	Purification of Maize Nucleotide Pyrophosphatase/Phosphodiesterase Casts Doubt on the Existence of Zeatin Cis–Trans Isomerase in Plants. Frontiers in Plant Science, 2017, 8, 1473.	1.7	20
7	Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance. Frontiers in Plant Science, 2016, 7, 1264.	1.7	90
8	Functional characterization of the first filamentous fungal <scp>tRNA</scp> â€isopentenyltransferase and its role in the virulence of <i>Claviceps purpurea</i> . New Phytologist, 2016, 211, 980-992.	3.5	45
9	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	1.1	124
10	Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Science, 2016, 247, 127-137.	1.7	25
11	Dataset for transcriptional response of barley (Hordeum vulgare) exposed to drought and subsequent re-watering. Data in Brief, 2016, 8, 334-341.	0.5	5
12	Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles. Plant Physiology and Biochemistry, 2016, 104, 114-124.	2.8	11
13	Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnology, 2016, 33, 676-691.	2.4	51
14	Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology, 2016, 33, 692-705.	2.4	117
15	Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnology, 2016, 33, 735-742.	2.4	37
16	<i>De novo</i> biosynthesis of cytokinins in the biotrophic fungus <scp><i>C</i></scp> <i>laviceps purpurea</i> . Environmental Microbiology, 2015, 17, 2935-2951.	1.8	74
17	The three-dimensional structure of "Lonely Guy―from <i>Claviceps purpurea</i> provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1539-1546.	1.5	17
18	Improving field production of ergot alkaloids by application of gametocide on rye host plants. New Biotechnology, 2015, 32, 739-746.	2.4	3

Petr Galuszka

#	Article	IF	CITATIONS
19	Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnology Advances, 2015, 33, 1005-1023.	6.0	107
20	Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnology Advances, 2014, 32, 137-157.	6.0	41
21	Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiology and Biochemistry, 2014, 74, 283-293.	2.8	62
22	Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnology Advances, 2013, 31, 97-117.	6.0	109
23	N9-substituted aromatic cytokinins with negligible side effects on root development are an emerging tool for in vitro culturing. Plant Signaling and Behavior, 2013, 8, e24392.	1.2	21
24	Overexpression of Cytokinin Dehydrogenase Genes in Barley (Hordeum vulgare cv. Golden Promise) Fundamentally Affects Morphology and Fertility. PLoS ONE, 2013, 8, e79029.	1.1	69
25	Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase. Electrophoresis, 2012, 33, 2365-2373.	1.3	19
26	Novel Cytokinin Derivatives Do Not Show Negative Effects on Root Growth and Proliferation in Submicromolar Range. PLoS ONE, 2012, 7, e39293.	1.1	60
27	Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany, 2011, 62, 2827-2840.	2.4	269
28	Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62, 2431-2452.	2.4	341
29	N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry, 2011, 72, 821-831.	1.4	39
30	Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: Heterologous expression, purification and properties. Phytochemistry, 2010, 71, 1970-1978.	1.4	74
31	Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. Journal of Experimental Botany, 2010, 61, 1839-1851.	2.4	183
32	Characterization of New Maize Genes Putatively Involved in Cytokinin Metabolism and Their Expression during Osmotic Stress in Relation to Cytokinin Levels Â. Plant Physiology, 2009, 151, 433-447.	2.3	139
33	Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. Journal of Experimental Botany, 2009, 60, 2701-2712.	2.4	68
34	Identification of <i>Rhodococcus fascians</i> cytokinins and their modus operandi to reshape the plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 929-934.	3.3	193
35	Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic and Medicinal Chemistry, 2009, 17, 1938-1947.	1.4	58
36	Metabolism of plant hormones cytokinins and their function in signaling, cell differentiation and plant development. Studies in Natural Products Chemistry, 2008, , 203-264.	0.8	13

Petr Galuszka

#	Article	IF	CITATIONS
37	Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana Expressed in Nicotiana tabacum L Journal of Plant Growth Regulation, 2007, 26, 255-267.	2.8	151
38	Tissue Localization of Cytokinin Dehydrogenase in Maize: Possible Involvement of Quinone Species Generated from Plant Phenolics by Other Enzymatic Systems in the Catalytic Reaction. Plant and Cell Physiology, 2005, 46, 716-728.	1.5	48
39	Cytokinin oxidase/dehydrogenase genes in barley and wheat. FEBS Journal, 2004, 271, 3990-4002.	0.2	86
40	Cytokinin Oxidase/Cytokinin Dehydrogenase Assay: Optimized Procedures and Applications. Analytical Biochemistry, 2002, 306, 1-7.	1.1	91
41	Cytokinin oxidase or dehydrogenase?. FEBS Journal, 2001, 268, 450-461.	0.2	115
42	Barley polyamine oxidase: characterisation and analysis of the cofactor and the N-terminal amino acid sequence. Phytochemical Analysis, 2001, 12, 166-173.	1.2	18
43	Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases. IUBMB Life, 1999, 47, 47-61.	1.5	1