Michalis Konsolakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10572498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Support-induced modifications on the CO2 hydrogenation performance of Ni/CeO2: The effect of ZnO doping on CeO2 nanorods. Journal of CO2 Utilization, 2022, 61, 102057.	6.8	8
2	Synthesis of copper (I, II) oxides/hydrochar nanocomposites for the efficient sonocatalytic degradation of organic contaminants. Journal of Industrial and Engineering Chemistry, 2021, 95, 73-82.	5.8	11
3	Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. Journal of CO2 Utilization, 2021, 44, 101408.	6.8	26
4	Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts, 2021, 11, 452.	3.5	33
5	Shape Effects of Ceria Nanoparticles on the Water‒Gas Shift Performance of CuOx/CeO2 Catalysts. Catalysts, 2021, 11, 753.	3.5	12
6	Rational Design of Non-Precious Metal Oxide Catalysts by Means of Advanced Synthetic and Promotional Routes. Catalysts, 2021, 11, 895.	3.5	0
7	Deciphering the role of Ni particle size and nickel-ceria interfacial perimeter in the low-temperature CO2 methanation reaction over remarkably active Ni/CeO2 nanorods. Applied Catalysis B: Environmental, 2021, 297, 120401.	20.2	65
8	Î ë chno-economic assessment of industrially-captured CO2 upgrade to synthetic natural gas by means of renewable hydrogen. Renewable Energy, 2021, 179, 1884-1896.	8.9	11
9	Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes, 2020, 8, 847.	2.8	21
10	Hydrothermal Synthesis of ZnO–doped Ceria Nanorods: Effect of ZnO Content on the Redox Properties and the CO Oxidation Performance. Applied Sciences (Switzerland), 2020, 10, 7605.	2.5	13
11	Remarkable efficiency of Ni supported on hydrothermally synthesized CeO2 nanorods for low-temperature CO2 hydrogenation to methane. Catalysis Communications, 2020, 142, 106036.	3.3	41
12	Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts, 2020, 10, 160.	3.5	66
13	Cu2O-CuO@biochar composite: Synthesis, characterization and its efficient photocatalytic performance. Applied Surface Science, 2019, 498, 143846.	6.1	71
14	Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts, 2019, 9, 371.	3.5	58
15	Ceria Nanoparticles' Morphological Effects on the N2O Decomposition Performance of Co3O4/CeO2 Mixed Oxides. Catalysts, 2019, 9, 233.	3.5	16
16	CO2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu). Nanomaterials, 2019, 9, 1739.	4.1	45
17	Optimization of N ₂ O decomposition activity of CuO–CeO ₂ mixed oxides by means of synthesis procedure and alkali (Cs) promotion. Catalysis Science and Technology, 2018, 8, 2312-2322.	4.1	32
18	Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 230, 18-28.	20.2	359

MICHALIS KONSOLAKIS

#	Article	IF	CITATIONS
19	Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrasonics Sonochemistry, 2018, 41, 503-513.	8.2	81
20	Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrasonics Sonochemistry, 2017, 35, 72-80.	8.2	102
21	Impact of the synthesis parameters on the solid state properties and the CO oxidation performance of ceria nanoparticles. RSC Advances, 2017, 7, 6160-6169.	3.6	67
22	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	3.8	29
23	Hydrogen Production by Ethanol Steam Reforming (ESR) over CeO2 Supported Transition Metal (Fe, Co,) Tj ETQq	1 <u>1 0</u> .7843	314 rgBT /0
24	Surface Chemistry and Catalysis. Catalysts, 2016, 6, 102.	3.5	3
25	The role of Copper–Ceria interactions in catalysis science: Recent theoretical and experimental advances. Applied Catalysis B: Environmental, 2016, 198, 49-66.	20.2	241
26	Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions. Applied Surface Science, 2015, 341, 48-54.	6.1	95
27	Recent Advances on Nitrous Oxide (N ₂ 0) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catalysis, 2015, 5, 6397-6421.	11.2	297
28	Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions. Applied Surface Science, 2014, 320, 244-255.	6.1	45
29	Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1â^'xSmxOÎ′ mixed oxides. Journal of Hazardous Materials, 2013, 261, 512-521.	12.4	92
30	The Reduction of NO by Propene over Ba-Promoted Pt/γ-Al2O3 Catalysts. Journal of Catalysis, 2001, 198, 142-150.	6.2	56
31	Strong Promotion by Na of Pt/Ĵ³-Al2O3 Catalysts Operated under Simulated Exhaust Conditions. Journal of Catalysis, 2000, 193, 330-337.	6.2	64