
Daniel E Dykhuizen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10572457/publications.pdf Version: 2024-02-01

DANIEL E DYKHLIIZEN

#	Article	IF	CITATIONS
1	Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation. BMC Evolutionary Biology, 2018, 18, 72.	3.2	16
2	Pathogen population structure can explain hospital outbreaks. ISME Journal, 2018, 12, 2835-2843.	9.8	4
3	Evolutionary implications of Liebig's law of the minimum: Selection under low concentrations of two nonsubstitutable nutrients. Ecology and Evolution, 2017, 7, 5296-5309.	1.9	14
4	Evolution of Resistance to Continuously Increasing Streptomycin Concentrations in Populations of Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 1336-1342.	3.2	28
5	The effects of species properties and community context on establishment success. Oikos, 2015, 124, 355-363.	2.7	10
6	Evolution of Northeastern and Midwestern <i>Borrelia burgdorferi</i> , United States. Emerging Infectious Diseases, 2010, 16, 911-917.	4.3	46
7	Waste and Yet Want Not. Molecular Cell, 2010, 38, 625-626.	9.7	2
8	High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12412-12417.	7.1	95
9	Transcription, Translation, and the Evolution of Specialists and Generalists. Molecular Biology and Evolution, 2009, 26, 2661-2678.	8.9	20
10	The Cost of Expression of <i>Escherichia coli lac</i> Operon Proteins Is in the Process, Not in the Products. Genetics, 2008, 178, 1653-1660.	2.9	187
11	Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 227-235.	2.6	179
12	The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. American Journal of Tropical Medicine and Hygiene, 2008, 78, 806-10.	1.4	71
13	VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI. Evolution; International Journal of Organic Evolution, 2007, 55, 897-908.	2.3	0
14	Selection for functional diversity drives accumulation of point mutations in Dr adhesins of Escherichia coli. Molecular Microbiology, 2007, 64, 180-194.	2.5	32
15	Source–sink dynamics of virulence evolution. Nature Reviews Microbiology, 2006, 4, 548-555.	28.6	134
16	A MODEST MODEL EXPLAINS THE DISTRIBUTION AND ABUNDANCE OF BORRELIA BURGDORFERI STRAINS. American Journal of Tropical Medicine and Hygiene, 2006, 74, 615-622.	1.4	35
17	A modest model explains the distribution and abundance of Borrelia burgdorferi strains. American Journal of Tropical Medicine and Hygiene, 2006, 74, 615-22.	1.4	26
18	Evolutionary genomics of ecological specialization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11719-11724.	7.1	86

DANIEL E DYKHUIZEN

#	Article	IF	CITATIONS
19	ospC Diversity in Borrelia burgdorferi. Genetics, 2004, 168, 713-722.	2.9	245
20	Evolution of Specialists in an Experimental Microcosm. Genetics, 2004, 167, 2015-2026.	2.9	40
21	Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends in Microbiology, 2003, 11, 115-117.	7.7	42
22	SIZE DOESN'T MATTER: MICROBIAL SELECTION EXPERIMENTS ADDRESS ECOLOGICAL PHENOMENA. Ecology, 2003, 84, 1679-1687.	3.2	13
23	Geographic Uniformity of the Lyme Disease Spirochete (<i>Borrelia burgdorferi</i>) and Its Shared History With Tick Vector (<i>lxodes scapularis</i>) in the Northeastern United States. Genetics, 2002, 160, 833-849.	2.9	215
24	Enzyme Kinetics, Substitutable Resources and Competition: From Biochemistry to Frequency-Dependent Selection in <i>lac</i> . Genetics, 2002, 162, 485-499.	2.9	37
25	The implications of a low rate of horizontal transfer in Borrelia. Trends in Microbiology, 2001, 9, 344-350.	7.7	105
26	Methods for Estimating Gene Frequencies and Detecting Selection in Bacterial Populations. Genetics, 2000, 155, 499-508.	2.9	17
27	Recombinant Chimeric Borrelia Proteins for Diagnosis of Lyme Disease. Journal of Clinical Microbiology, 2000, 38, 2530-2535.	3.9	32
28	Infection With Multiple Strains of Borrelia burgdorferi Sensu Stricto in Patients With Lyme Disease. Archives of Dermatology, 1999, 135, 1329-33.	1.4	46
29	Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends in Microbiology, 1999, 7, 191-195.	7.7	205
30	Genetic Diversity of ospC in a Local Population of Borrelia burgdorferi sensu stricto. Genetics, 1999, 151, 15-30.	2.9	273
31	Four Clones of <i>Borrelia burgdorferi</i> Sensu Stricto Cause Invasive Infection in Humans. Infection and Immunity, 1999, 67, 3518-3524.	2.2	260
32	Santa Rosalia revisited: why are there so many species of bacteria?. , 1998, 73, 25-33.		245
33	The evolution of phage lysis timing. Evolutionary Ecology, 1996, 10, 545-558.	1.2	168
34	Predicted fitness changes along an environmental gradient. Evolutionary Ecology, 1994, 8, 524-541.	1.2	24
35	[45] Chemostats used for studying natural selection and adaptive evolution. Methods in Enzymology, 1993, 224, 613-631.	1.0	42
36	THE INCREASED POTENTIAL FOR SELECTION OF THE <i>LAC</i> OPERON OF <i>ESCHERICHIA COLI</i> . Evolution; International Journal of Organic Evolution, 1993, 47, 741-749.	2.3	16

DANIEL E DYKHUIZEN

#	Article	IF	CITATIONS
37	Mountaineering with microbes. Nature, 1990, 346, 15-16.	27.8	4
38	Experimental Studies of Natural Selection in Bacteria. Annual Review of Ecology, Evolution, and Systematics, 1990, 21, 373-398.	6.7	178
39	Enzyme activity and fitness: Evolution in solution. Trends in Ecology and Evolution, 1990, 5, 257-262.	8.7	114
40	Metabolic Flux and Fitness. Genetics, 1987, 115, 25-31.	2.9	242
41	Distribution and Abundance of Insertion Sequences Among Natural Isolates of <i>Escherichia coli</i> . Genetics, 1987, 115, 51-63.	2.9	153
42	Fitness as a function of β-galactosidase activity in <i>Escherichia coli</i> . Genetical Research, 1986, 48, 1-8.	0.9	91
43	JOINT DISTRIBUTION OF INSERTION ELEMENTS IS4 AND IS5 IN NATURAL ISOLATES OF ESCHERICHIA COLI. Genetics, 1985, 111, 219-231.	2.9	18
44	LIMITS OF ADAPTATION: THE EVOLUTION OF SELECTIVE NEUTRALITY. Genetics, 1985, 111, 655-674.	2.9	279
45	Potential for hitchhiking in theeda-edd-zwfgene cluster ofEscherichia coli. Genetical Research, 1984, 43, 229-239.	0.9	8
46	SPECIFIC DELETION OCCURRING IN THE DIRECTED EVOLUTION OF 6-PHOSPHOGLUCONATE DEHYDROGENASE IN ESCHERICHIA COLI. Genetics, 1984, 108, 765-772.	2.9	12
47	Accessory DNAs in the Bacterial Gene Pool: Playground for Coevolution. Novartis Foundation Symposium, 1984, 102, 233-252.	1.1	8
48	FUNCTIONAL EFFECTS OF PGI ALLOZYMES IN <i>ESCHERICHIA COLI</i> . Genetics, 1983, 105, 1-18.	2.9	71