Russell W Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10572319/publications.pdf Version: 2024-02-01

PUSSELL WIENKINS

#	Article	IF	CITATIONS
1	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	28.9	1,260
2	Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 2018, 118, 9-16.	6.4	944
3	A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.	28.9	892
4	CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discovery, 2018, 8, 216-233.	9.4	503
5	<i>Ex Vivo</i> Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discovery, 2018, 8, 196-215.	9.4	392
6	Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cellular Signalling, 2009, 21, 836-846.	3.6	243
7	Treatment of Advanced Melanoma in 2020 and Beyond. Journal of Investigative Dermatology, 2021, 141, 23-31.	0.7	193
8	3D microfluidic <i>ex vivo</i> culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on A Chip, 2018, 18, 3129-3143.	6.0	185
9	Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. British Journal of Pharmacology, 2011, 163, 694-712.	5.4	150
10	Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. Journal of Cell Biology, 2008, 181, 335-350.	5.2	149
11	Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. Journal of Lipid Research, 2011, 52, 68-77.	4.2	104
12	Regulated Secretion of Acid Sphingomyelinase. Journal of Biological Chemistry, 2010, 285, 35706-35718.	3.4	92
13	Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death. Journal of Biological Chemistry, 2011, 286, 15929-15942.	3.4	85
14	Mechanisms of Resistance to Immune Checkpoint Blockade. American Journal of Clinical Dermatology, 2019, 20, 41-54.	6.7	83
15	Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunology Research, 2016, 4, 520-530.	3.4	79
16	A novel role for protein kinase Cδâ€mediated phosphorylation of acid sphingomyelinase in UV lightâ€induced mitochondrial injury. FASEB Journal, 2008, 22, 183-193.	0.5	70
17	Molecular Targeting of Acid Ceramidase: Implications to Cancer Therapy. Current Drug Targets, 2008, 9, 653-661.	2.1	67
18	Differential Effects of Ceramide and Sphingosine 1-Phosphate on ERM Phosphorylation. Journal of Biological Chemistry, 2010, 285, 32476-32485.	3.4	66

Russell W Jenkins

#	Article	IF	CITATIONS
19	Protein Kinase C-induced Activation of a Ceramide/Protein Phosphatase 1 Pathway Leading to Dephosphorylation of p38 MAPK. Journal of Biological Chemistry, 2006, 281, 36793-36802.	3.4	55
20	Defective Acid Sphingomyelinase Pathway withPseudomonas aeruginosaInfection in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 367-375.	2.9	52
21	A Novel Mechanism of Lysosomal Acid Sphingomyelinase Maturation. Journal of Biological Chemistry, 2011, 286, 3777-3788.	3.4	51
22	Acid β-Glucosidase 1 Counteracts p38δ-dependent Induction of Interleukin-6. Journal of Biological Chemistry, 2009, 284, 12979-12988.	3.4	50
23	Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Clinical Cancer Research, 2018, 24, 4854-4864.	7.0	49
24	Involvement of Acid β-Glucosidase 1 in the Salvage Pathway of Ceramide Formation. Journal of Biological Chemistry, 2009, 284, 12972-12978.	3.4	46
25	Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized lowâ€density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release. Immunology, 2012, 136, 30-45.	4.4	39
26	Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade. Journal of Clinical Investigation, 2021, 131, .	8.2	35
27	Regulation of CC Ligand 5/RANTES by Acid Sphingomyelinase and Acid Ceramidase. Journal of Biological Chemistry, 2011, 286, 13292-13303.	3.4	30
28	Neutral Sphingomyelinase-2 Mediates Growth Arrest by Retinoic Acid through Modulation of Ribosomal S6 Kinase. Journal of Biological Chemistry, 2011, 286, 21565-21576.	3.4	26
29	Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opinion on Therapeutic Targets, 2020, 24, 1065-1078.	3.4	26
30	Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS ONE, 2017, 12, e0177805.	2.5	24
31	Safety Study of Adeno-Associated Virus Serotype 2-Mediated Human Acid Sphingomyelinase Expression in the Nonhuman Primate Brain. Human Gene Therapy, 2012, 23, 891-902.	2.7	21
32	Evaluation of the role of secretory sphingomyelinase and bioactive sphingolipids as biomarkers in hemophagocytic lymphohistiocytosis. American Journal of Hematology, 2013, 88, E265-72.	4.1	19
33	Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers, 2021, 13, 6052.	3.7	15
34	Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration. PLoS ONE, 2015, 10, e0133032.	2.5	13
35	Numb Chin Syndrome in Acute Myeloid Leukemia. American Journal of the Medical Sciences, 2012, 344, 237-240.	1.1	8
36	Refining Targeted Therapy Opportunities for <i>BRAF</i> -Mutant Melanoma. Cancer Discovery, 2017, 7, 799-801.	9.4	4

IF

CITATIONS

ARTICLE

Ceramide and Lipid Mediators in Apoptosis. , 0, , 88-105.