Annick Mercenier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10572280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. MBio, 2020, 11, .	1.8	98
2	A topical treatment containing heatâ€ŧreated <i>Lactobacillus johnsonii</i> NCC 533 reduces <i>Staphylococcus aureus</i> adhesion and induces antimicrobial peptide expression in an in vitro reconstructed human epidermis model. Experimental Dermatology, 2018, 27, 358-365.	1.4	26
3	Antibiotic Treatment Leads to Fecal Escherichia coli and Coliphage Expansion in Severely Malnourished Diarrhea Patients. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 458-460.e6.	2.3	15
4	Bangladeshi children with acute diarrhoea show faecal microbiomes with increased <i>Streptococcus</i> abundance, irrespective of diarrhoea aetiology. Environmental Microbiology, 2018, 20, 2256-2269.	1.8	33
5	Early intervention with Bifidobacterium lactis NCC2818 modulates the host-microbe interface independent of the sustained changes induced by the neonatal environment. Scientific Reports, 2017, 7, 5310.	1.6	10
6	Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clinical, Cosmetic and Investigational Dermatology, 2017, Volume 10, 249-257.	0.8	69
7	Human Intestinal Barrier Function in Health and Disease. Clinical and Translational Gastroenterology, 2016, 7, e196.	1.3	569
8	Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype. ISME Journal, 2016, 10, 145-157.	4.4	44
9	Oral administration of <i>Lactobacillus paracasei</i> NCC 2461 for the modulation of grass pollen allergic rhinitis: a randomized, placeboâ€controlled study during the pollen season. Clinical and Translational Allergy, 2015, 5, 41.	1.4	13
10	Nestlé's research on nutrition and the human gut microbiome. Scientific American, 2015, 312, 79-85.	1.0	0
11	Comparison of two oral probiotic preparations in a randomized crossover trial highlights a potentially beneficial effect of <i>Lactobacillus paracasei</i> NCC2461Âin patients with allergic rhinitis. Clinical and Translational Allergy, 2014, 4, 1.	1.4	51
12	ldentification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy. British Journal of Nutrition, 2014, 112, 358-368.	1.2	31
13	Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Current Opinion in Microbiology, 2013, 16, 262-269.	2.3	66
14	Weaning diet induces sustained metabolic phenotype shift in the pig and influences host response to <i>Bifidobacterium lactis</i> NCC2818. Gut, 2013, 62, 842-851.	6.1	26
15	Dietary supplementation with <i>Bifidobacterium lactis</i> NCC2818 from weaning reduces local immunoglobulin production in lymphoid-associated tissues but increases systemic antibodies in healthy neonates. British Journal of Nutrition, 2013, 110, 1243-1252.	1.2	14
16	Characterization of Candidate Anti-Allergic Probiotic Strains in a Model of Th2-Skewed Human Peripheral Blood Mononuclear Cells. International Archives of Allergy and Immunology, 2013, 161, 142-154.	0.9	32
17	<i>Bifidobacterium bifidum</i> NCC 453 Promotes Tolerance Induction in Murine Models of Sublingual Immunotherapy. International Archives of Allergy and Immunology, 2012, 158, 35-42.	0.9	24
18	Intragastric and Intranasal Administration of <i>Lactobacillus paracasei</i> NCC2461 Modulates Allergic Airway Inflammation in Mice. International Journal of Inflammation, 2012, 2012, 1-8.	0.9	56

ANNICK MERCENIER

#	Article	IF	CITATIONS
19	<i>Lactococcus lactis</i> NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum. Clinical and Developmental Immunology, 2012, 2012, 1-10.	3.3	25
20	Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiology Ecology, 2012, 79, 192-202.	1.3	86
21	Nigella sativa (Black Cumin) Seed Extract Alleviates Symptoms of Allergic Diarrhea in Mice, Involving Opioid Receptors. PLoS ONE, 2012, 7, e39841.	1.1	39
22	Perinatal Maternal Administration of Lactobacillus paracasei NCC 2461 Prevents Allergic Inflammation in a Mouse Model of Birch Pollen Allergy. PLoS ONE, 2012, 7, e40271.	1.1	37
23	Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine, 2011, 29, 1981-1990.	1.7	38
24	Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiology Ecology, 2011, 76, 133-144.	1.3	91
25	Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Prevention and Management of Allergic Diseases by Probiotics1–3. Journal of Nutrition, 2010, 140, 713S-721S.	1.3	119
26	Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Current Status and Recommendations for Future Research1–3. Journal of Nutrition, 2010, 140, 671S-676S.	1.3	217
27	Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology, 2008, 6, 349-362.	13.6	464
28	Cross-Talk between Probiotic Bacteria and the Host Immune System1,. Journal of Nutrition, 2007, 137, 781S-790S.	1.3	276
29	Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World Journal of Gastroenterology, 2007, 13, 236.	1.4	366
30	Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflammatory Bowel Diseases, 2006, 12, 1044-1052.	0.9	104
31	Food products and allergy development, prevention and treatment. Current Opinion in Biotechnology, 2006, 17, 198-203.	3.3	47
32	Recommendations for Improved Use of the Murine TNBS-Induced Colitis Model in Evaluating Anti-inflammatory Properties of Lactic Acid Bacteria: Technical and Microbiological Aspects. Digestive Diseases and Sciences, 2006, 51, 390-400.	1.1	81
33	Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews, 2005, 29, 491-509.	3.9	115
34	Oral Immunization of Mice with Lactic Acid Bacteria ProducingHelicobacter pyloriUrease B Subunit Partially Protects against Challenge withHelicobacter felis. Journal of Infectious Diseases, 2005, 192, 1441-1449.	1.9	94
35	From The Cover: Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10321-10326.	3.3	399
36	Enhanced Mucosal Delivery of Antigen with Cell Wall Mutants of Lactic Acid Bacteria. Infection and Immunity, 2004, 72, 2731-2737.	1.0	59

#	Article	IF	CITATIONS
37	The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology (United Kingdom), 2004, 150, 3601-3611.	0.7	103
38	The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2512-2517.	3.3	476
39	Knockout of the alanine racemase gene inLactobacillus plantarumresults in septation defects and cell wall perforation. FEMS Microbiology Letters, 2004, 233, 131-138.	0.7	60
40	Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice. Journal of Bacteriology, 2004, 186, 5721-5729.	1.0	211
41	Potential and Opportunities for Use of Recombinant Lactic Acid Bacteria in Human Health. Advances in Applied Microbiology, 2004, 56, 1-64.	1.3	67
42	Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine, 2003, 22, 87-95.	1.7	114
43	Lactic Acid Bacteria as Mucosal Delivery Vehicles. , 2003, , 261-290.		4
44	Use of Mouse Models To Evaluate the Persistence, Safety, and Immune Modulation Capacities of Lactic Acid Bacteria. Vaccine Journal, 2003, 10, 696-701.	3.2	113
45	New Scientific Paradigms for Probiotics and Prebiotics. Journal of Clinical Gastroenterology, 2003, 37, 105-118.	1.1	413
46	Lactic Acid Bacteria as Mucosal Delivery Vehicles. , 2003, , 261-290.		0
47	Characterization of a Williopsis saturnus var. mrakii high molecular weight secreted killer toxin with broad-spectrum antimicrobial activity. Journal of Antimicrobial Chemotherapy, 2002, 49, 961-971.	1.3	38
48	Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. Journal of Allergy and Clinical Immunology, 2002, 110, 617-623.	1.5	162
49	Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine, 2002, 20, 1769-1777.	1.7	104
50	Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria: impact of strain viability and in vivo persistence. Vaccine, 2002, 20, 3304-3309.	1.7	90
51	Cloning and characterization ofWMSU1, aWilliopsis saturnus var.mrakii gene encoding a new yeast SUN protein involved in the cell wall structure. Yeast, 2002, 19, 1127-1138.	0.8	2
52	Edible genetically modified microorganisms and plants for improved health. Current Opinion in Biotechnology, 2001, 12, 510-515.	3.3	26
53	Mucosal Immune Responses and Protection against Tetanus Toxin after Intranasal Immunization with RecombinantLactobacillus plantarum. Infection and Immunity, 2001, 69, 1547-1553.	1.0	139
54	Use of Green Fluorescent Protein To Tag Lactic Acid Bacterium Strains under Development as Live Vaccine Vectors. Applied and Environmental Microbiology, 2000, 66, 383-391.	1.4	108

#	Article	IF	CITATIONS
55	Adaptation of the Nisin-Controlled Expression System in Lactobacillus plantarum : a Tool To Study In Vivo Biological Effects. Applied and Environmental Microbiology, 2000, 66, 4427-4432.	1.4	147
56	Production of cholera toxin B subunit inLactobacillus. FEMS Microbiology Letters, 1998, 169, 29-36.	0.7	42
57	Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology (United Kingdom), 1997, 143, 2733-2741.	0.7	51
58	Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus β-galactosidase sequences. Microbiology (United) Tj ETQq0 0 0 rgBT	/ O . v erlock	103 Tf 50 61
59	Molecular genetics of Streptococcus thermophilus. FEMS Microbiology Letters, 1990, 87, 61-78.	0.7	77
60	Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. FEBS Journal, 1989, 179, 53-60.	0.2	78
61	Genetics of Streptococcus thermophilus: A Review. Journal of Dairy Science, 1989, 72, 3444-3454.	1.4	27
62	Development of an efficient spheroplast transformation procedure for S. thermophilus: the use of transfection to define a regeneration medium. Biochimie, 1988, 70, 567-577.	1.3	23
63	Isolation and structural analysis of the phospho-β-galactosidase gene from Streptococcus lactis Z268. Gene, 1988, 62, 249-261.	1.0	49
64	Strategies for the development of bacterial transformation systems. Biochimie, 1988, 70, 503-517.	1.3	88
65	Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Molecular Genetics and Genomics, 1986, 203, 421-429.	2.4	62
66	Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene, 1985, 33, 293-303.	1.0	114
67	Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Molecular Genetics and Genomics, 1984, 193, 437-444.	2.4	44
68	Enzymes of arginine utilization and their formation in Aeromonas formicans NCIB 9232. Archives of Microbiology, 1982, 133, 295-299.	1.0	13
69	Structure and Function of Ornithine Carbamoyltransferases. FEBS Journal, 1977, 80, 401-409.	0.2	76