Masaya Kotaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10571802/publications.pdf Version: 2024-02-01

Μλέλνλ Κοτλκι

#	Article	IF	CITATIONS
1	Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber. Nano Materials Science, 2022, 4, 251-258.	3.9	12
2	High performance epoxy nanocomposites based on dual epoxide modified α-Zirconium phosphate nanoplatelets. Polymer, 2021, 212, 123154.	1.8	14
3	Manipulation of Fracture Behavior of Poly(methyl methacrylate) Nanocomposites by Interfacial Design of a Metal–Organic-Framework Nanoparticle Toughener. Langmuir, 2020, 36, 11938-11947.	1.6	13
4	High dielectric constant epoxy nanocomposites based on metal organic frameworks decorated multi-walled carbon nanotubes. Polymer, 2020, 207, 122913.	1.8	12
5	Mechanical behavior of self-curing epoxy nanocomposites. Polymer, 2019, 179, 121631.	1.8	16
6	Structure and fracture toughness of thin-wall polypropylene moulded at different injection speeds. Thin-Walled Structures, 2018, 125, 12-20.	2.7	9
7	Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8. ACS Applied Materials & Interfaces, 2018, 10, 1250-1257.	4.0	70
8	Scratch behavior of multilayer polymeric coating systems. Materials and Design, 2017, 128, 143-149.	3.3	30
9	Effect of soft base layer on scratch properties of acrylic hard coatings. Polymer Engineering and Science, 2016, 56, 528-535.	1.5	11
10	In situ formation of benzoxazines in polyoxymethylene: a simple approach for retarding formaldehyde generation and tuning mechanical properties under a semi-interpenetrating network. RSC Advances, 2016, 6, 91468-91476.	1.7	4
11	An effect of surface segregation of polyhedral oligomeric silsesquioxanes on surface physical properties of acrylic hard coating materials. Polymer, 2016, 84, 81-88.	1.8	14
12	The Relationship between Bulk Property and Property Distribution in Thin-Wall Injection Molded PP at Different Molecular Weight and Molecular Weight Distribution. Advances in Materials Physics and Chemistry, 2016, 06, 1-8.	0.3	2
13	Effect of Molecular Weight and Molecular Distribution on Skin Structure and Shear Strength Distribution near the Surface of Thin-Wall Injection Molded Polypropylene. Open Journal of Organic Polymer Materials, 2016, 06, 1-10.	2.0	6
14	Highly oriented microstructures and surface mechanical properties of polypropylene (PP) molded by ultra-high shear rate. Polymer, 2015, 72, 104-112.	1.8	9
15	Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer, 2015, 56, 572-580.	1.8	91
16	Role of surfactant on inducing specific microdomains of block copolymer: An example case from polystyrene-b-poly(ethylene-co-1-butene)-b-polystyrene (SEBS) electrospun thermoplastic-elastomer fiber containing polyethylene glycol lauryl ether (PGLE). Polymer, 2014, 55, 2068-2076.	1.8	7
17	Effect of molecular weight and molecular weight distribution on weldâ€line interface in injectionâ€molded polypropylene. Polymer Engineering and Science, 2013, 53, 2336-2344.	1.5	15
18	Influence of additive on structure of PVDF nanofibers electrospun via new spinneret design. Journal of Applied Polymer Science, 2013, 130, 1752-1758.	1.3	5

Masaya Kotaki

#	Article	IF	CITATIONS
19	Evaluation of Scratch Properties of Polymers by Progressive Load Scratch Test. Seikei-Kakou, 2013, 25, 363-366.	0.0	0
20	Mechanical Property Enhancement of Polylactide Nanofibers through Optimization of Molecular Weight, Electrospinning Conditions, and Stereocomplexation. Macromolecules, 2012, 45, 5494-5500.	2.2	92
21	Molecular dynamics study on the effect of molecular orientation on polymer welding. Polymer, 2012, 53, 4280-4286.	1.8	18
22	Polymorphism of electrospun polyvinylidene difluoride/carbon nanotube (CNT) nanocomposites: Synergistic effects of CNT surface chemistry, extensional force and supercritical carbon dioxide treatment. Polymer, 2012, 53, 5097-5102.	1.8	22
23	Raman tensor analysis of hexagonal polyoxymethylene and its application to study the molecular arrangement in highly crystalline electrospun nanofibers. Journal of Raman Spectroscopy, 2012, 43, 1957-1963.	1.2	4
24	Effect of scratch velocity on scratch behavior of injectionâ€molded polypropylene. Journal of Applied Polymer Science, 2012, 125, 2861-2866.	1.3	16
25	Size-controllable nanospheres prepared by blending a thermoset monomer in confined morphology with thermoplastic elastomer. Polymer, 2012, 53, 1167-1171.	1.8	4
26	Electrospun photosensitive nanofibers: potential for photocurrent therapy in skin regeneration. Photochemical and Photobiological Sciences, 2012, 12, 124-134.	1.6	24
27	Directing Thermoplastic Elastomer Microdomain Parallel to Fiber Axis: A Model Case of SEBS with Benzoxazine through ï€â€"ï€ Stacking. Macromolecules, 2011, 44, 9276-9285.	2.2	19
28	Existence of microdomain orientation in thermoplastic elastomer through a case study of SEBS electrospun fibers. Polymer, 2011, 52, 844-853.	1.8	32
29	Investigation of Carrier Collection Capability in Organic Heterostructure with Conductive Polymer Nanofiber. Japanese Journal of Applied Physics, 2011, 50, 080204.	0.8	0
30	Investigation of Carrier Collection Capability in Organic Heterostructure with Conductive Polymer Nanofiber. Japanese Journal of Applied Physics, 2011, 50, 080204.	0.8	0
31	Morphologies and electrical properties of electrospun poly[(<i>R</i>)â€3â€hydroxybutyrateâ€ <i>co</i> â€{ <i>R</i>)â€3â€hydroxyvalerate]/ multiwalled carbon nanot fibers. Journal of Applied Polymer Science, 2010, 116, 1030-1035.	ubes	11
32	Supercritical Carbon Dioxideâ€Treated Electrospun Poly(vinylidene fluoride) Nanofibrous Membranes: Morphology, Structures and Properties as an Ionic‣iquid Host. Macromolecular Rapid Communications, 2010, 31, 1779-1784.	2.0	15
33	Unique structural features and electrical properties of electrospun conjugated polymer poly(3-hexylthiophene) (P3HT) fibers. Synthetic Metals, 2010, 160, 2587-2595.	2.1	40
34	Morphology, Internal Structure and Properties of Electrospun Nanofibers. Seikei-Kakou, 2010, 22, 79-86.	0.0	0
35	Fabrication and morphology control of poly(methyl methacrylate) hollow structures via coaxial electrospinning. Journal of Applied Polymer Science, 2009, 111, 408-416.	1.3	36
36	Effect of Molecular Orientation on Mechanical Property of Single Electrospun Fiber of Poly[(<i>R</i>)-3-hydroxybutyrate- <i>co</i> -(<i>R</i>)-3-hydroxyvalerate]. Journal of Physical Chemistry B, 2009, 113, 13179-13185.	1.2	46

Masaya Kotaki

#	Article	IF	CITATIONS
37	Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer, 2008, 49, 4196-4203.	1.8	100
38	In situ fibrous structure oriented polymer blends composed of poly(lactic acid) and polycaprolactone containing peroxide. Journal of Applied Polymer Science, 2008, 108, 256-263.	1.3	6
39	Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers. Journal of the American Chemical Society, 2008, 130, 15460-15466.	6.6	200
40	Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures. Langmuir, 2008, 24, 13621-13626.	1.6	146
41	Electrospun Polyoxymethylene: Spinning Conditions and Its Consequent Nanoporous Nanofiber. Macromolecules, 2008, 41, 4746-4752.	2.2	76
42	Nanofiber Fabrication via Electrospinning. Journal of the Adhesion Society of Japan, 2008, 44, 26-30.	0.0	2
43	Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 2007, 103, 1066-1074.	1.3	49
44	Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 46
45	ã,¨ãf¬ā,¯ãf^ãfã,¹ãf"ãf<ãf³ã,°æ³•ã«ã,ˆã,<ãfŠãfŽãf•ã,¡ã,≇fãf¹¼ã®å‰µè£¹⁄2. Seikei-Kakou, 2007, 19, 618-622.	0.0	0
46	Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue Engineering, 2005, 11, 101-109.	4.9	967
47	Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials, 2005, 26, 2527-2536.	5.7	516
48	Structure and properties of electrospun PLLA single nanofibres. Nanotechnology, 2005, 16, 208-213.	1.3	273
49	Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering. Tissue Engineering, 2004, 10, 1160-1168.	4.9	367
50	Effects of morphology on the fracture toughness of PVC-U pipe. Journal of Vinyl and Additive Technology, 1998, 4, 164-168.	1.8	9
51	Design of Knitted Fabric Reinforced Composites. Journal of Reinforced Plastics and Composites, 1995, 14, 786-798.	1.6	8

52	Mechanical Properties of Warp-Knitted, Fabric-Reinforced Composites. Journal of Reinforced Plastics and Composites, 1993, 12, 1096-1110.	1.6	27
----	--	-----	----