List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10571624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 2008, 250, 49-67.	1.4	570
2	Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96, 225-242.	0.6	538
3	Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 2009, 113, 190-212.	0.6	388
4	Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 2015, 110, 1541-1575.	1.8	374
5	A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 2015, 43, 247-250.	2.0	359
6	The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 2009, 36, 25-51.	1.1	321
7	Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 2007, 31, 48-87.	1.1	293
8	Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 2009, 36, 2-24.	1.1	273
9	Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 2011, 39, 21-45.	1.1	260
10	Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 2009, 36, 133-159.	1.1	214
11	Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews, 2007, 31, 3-47.	1.1	207
12	Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 2013, 48, 173-192.	1.7	181
13	Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions To Mineralogy and Petrology, 2007, 153, 105-120.	1.2	173
14	The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 2006, 244, 234-250.	1.8	166
15	Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geology Reviews, 2015, 70, 385-406.	1.1	166
16	Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 2015, 70, 346-384.	1.1	153
17	Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 2017, 45, 563-566.	2.0	145
18	Geology and genesis of the giant Beiya porphyry–skarn gold deposit, northwestern Yangtze Block, China. Ore Geology Reviews, 2015, 70, 457-485.	1.1	132

#	Article	IF	CITATIONS
19	Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Scientific Reports, 2015, 5, 10231.	1.6	113
20	Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 2010, 119, 651-663.	0.6	112
21	Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: constraints from Re–Os dating of molybdenite. Mineralium Deposita, 2006, 41, 33-45.	1.7	111
22	Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geology Reviews, 2007, 31, 205-223.	1.1	108
23	A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences, 2017, 137, 35-79.	1.0	104
24	Continuous carbonatitic melt–fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China. Ore Geology Reviews, 2009, 36, 90-105.	1.1	101
25	The giant Dexing porphyry Cu–Mo–Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita, 2013, 48, 1019-1045.	1.7	96
26	The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geology Reviews, 2009, 36, 65-89.	1.1	94
27	Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 2017, 278-281, 477-490.	0.6	89
28	Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry. Mineralium Deposita, 2019, 54, 701-718.	1.7	87
29	A model for carbonatite hosted REE mineralisation — the Mianning–Dechang REE belt, Western Sichuan Province, China. Ore Geology Reviews, 2015, 70, 595-612.	1.1	83
30	Eocene high-MgO volcanism in southern Tibet: New constraints for mantle source characteristics and deep processes. Lithos, 2008, 105, 63-72.	0.6	82
31	Metallogeny of the northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geology Reviews, 2015, 70, 510-532.	1.1	76
32	Dating the giant Zhuxi W–Cu deposit (Taqian–Fuchun Ore Belt) in South China using molybdenite Re–Os and muscovite Ar–Ar system. Ore Geology Reviews, 2017, 86, 719-733.	1.1	69
33	Extent of underthrusting of the Indian plate beneath Tibet controlled the distribution of Miocene porphyry Cu–Mo ± Au deposits. Mineralium Deposita, 2014, 49, 165-173.	1.7	66
34	Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews, 2009, 36, 194-212.	1.1	61
35	Geology and origin of the post-collisional Narigongma porphyry Cu–Mo deposit, southern Qinghai, Tibet. Gondwana Research, 2014, 26, 536-556.	3.0	60
36	Zircon U–Pb ages of the Mianning–Dechang syenites, Sichuan Province, southwestern China: Constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 2015, 64, 554-568.	1.1	60

#	Article	IF	CITATIONS
37	Thrust-controlled, sediment-hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews, 2009, 36, 106-132.	1.1	57
38	Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 2020, 63, 2042-2067.	2.3	56
39	Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization. Lithos, 2018, 304-307, 155-179.	0.6	55
40	The Deep-Time Digital Earth program: data-driven discovery in geosciences. National Science Review, 2021, 8, nwab027.	4.6	55
41	Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn–Pb deposit, Iran: Implications for mineralization conditions and type. Ore Geology Reviews, 2019, 109, 184-200.	1.1	54
42	Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 2016, 245, 243-257.	0.6	53
43	Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	52
44	Nd isotopic variation of Paleozoic–Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust. Lithos, 2017, 272-273, 164-184.	0.6	51
45	The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: Enriched mantle source and petrogenesis. Geochimica Et Cosmochimica Acta, 2015, 159, 42-60.	1.6	48
46	Eocene potassic and ultrapotassic volcanism in south Tibet: New constraints on mantle source characteristics and geodynamic processes. Lithos, 2010, 117, 20-32.	0.6	40
47	Zircon Alteration as a Proxy for Rare Earth Element Mineralization Processes in Carbonatite-Nordmarkite Complexes of the Mianning-Dechang Rare Earth Element Belt, China. Economic Geology, 2019, 114, 719-744.	1.8	39
48	Geoscience knowledge graph in the big data era. Science China Earth Sciences, 2021, 64, 1105-1114.	2.3	37
49	Two episodes of mineralization in the Mengya'a deposit and implications for the evolution and intensity of Pb–Zn–(Ag) mineralization in the Lhasa terrane, Tibet. Ore Geology Reviews, 2017, 90, 877-896.	1.1	35
50	Tracking deep ancient crustal components by xenocrystic/inherited zircons of Palaeozoic felsic igneous rocks from the Altai–East Junggar terrane and adjacent regions, western Central Asian Orogenic Belt and its tectonic significance. International Geology Review, 2017, 59, 2021-2040.	1.1	35
51	Early Mesozoic Magmatism Within the Tibetan Plateau: Implications for the Paleoâ€Tethyan Tectonic Evolution and Continental Amalgamation. Tectonics, 2019, 38, 3505-3543.	1.3	33
52	Permian back-arc basin basalts in the Yushu area: New constrain on the Paleo-Tethyan evolution of the north-central Tibet. Lithos, 2017, 286-287, 216-226.	0.6	32
53	Devonian Nb-enriched basalts and andesites of north-central Tibet: Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block. Tectonophysics, 2016, 682, 96-107.	0.9	31
54	Jurassic granitoids in the northwestern Sanandaj–Sirjan Zone: Evolving magmatism in response to the development of a Neo-Tethyan slab window. Gondwana Research, 2018, 62, 269-286.	3.0	31

#	Article	IF	CITATIONS
55	Fingerprinting metal transfer from mantle. Nature Communications, 2019, 10, 3510.	5.8	30
56	Jurassic Hornblende Gabbros in Dongga, Eastern Gangdese, Tibet: Partial Melting of Mantle Wedge and Implications for Crustal Growth. Acta Geologica Sinica, 2017, 91, 545-564.	0.8	28
57	Xiongcun, Tibet: A telescoped system of veinlet-disseminated Cu (Au) mineralization and late vein-style Au (Ag)-polymetallic mineralization in a continental collision zone. Ore Geology Reviews, 2009, 36, 174-193.	1.1	27
58	Mantle flow: The deep mechanism of large-scale growth in Tibetan Plateau. Chinese Science Bulletin, 2021, 66, 2671-2690.	0.4	27
59	Formation of the Dongmozhazhua Pb–Zn Deposit in the Thrustâ€Fold Setting of the Tibetan Plateau, China: Evidence from Fluid Inclusion and Stable Isotope Data. Resource Geology, 2011, 61, 384-406.	0.3	26
60	Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan plateau: Implication for geodynamic setting and duration of the Cu mineralization. Science in China Series D: Earth Sciences, 2004, 47, 221.	0.9	26
61	Lithium isotopic composition and concentration of Himalayan leucogranites and the Indian lower continental crust. Lithos, 2017, 284-285, 416-428.	0.6	23
62	New Mapping of the World-Class Jinding Zn-Pb Deposit, Lanping Basin, Southwest China: Genesis of Ore Host Rocks and Records of Hydrocarbon-Rock Interaction. Economic Geology, 2020, 115, 981-1002.	1.8	23
63	Paleocene adakitic porphyry in the northern Qiangtang area, north-central Tibet: Evidence for early uplift of the Tibetan Plateau. Lithos, 2015, 212-215, 45-58.	0.6	22
64	Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geology Reviews, 2019, 104, 148-159.	1.1	21
65	Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: Constraints from geochemistry and Sr–Nd–Pb isotope. Lithos, 2009, 110, 129-139.	0.6	20
66	Lower-Crustal Magmatic Hornblendite in North China Craton: Insight into the Genesis of Porphyry Cu Deposits. Economic Geology, 2015, 110, 1879-1904.	1.8	20
67	Chemical and stable isotopic (B, H, and O) compositions of tourmaline in the Maocaoping vein-type Cu deposit, western Yunnan, China: Constraints on fluid source and evolution. Chemical Geology, 2016, 439, 173-188.	1.4	20
68	Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet. Gondwana Research, 2020, 77, 168-183.	3.0	20
69	Geology and chronology of the Zhaofayong carbonate-hosted Pb–Zn ore cluster: Implication for regional Pb–Zn metallogenesis in the Sanjiang belt, Tibet. Gondwana Research, 2016, 35, 15-26.	3.0	19
70	The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead–zinc mineralization (Gangdese, Tibet). Lithos, 2017, 288-289, 143-155.	0.6	18
71	Discovery of Cu-Zn, Cu-Sn intermetallic minerals and its significance for genesis of the Mianning-Dechang REE Metallogenic Belt, Sichuan Province, China. Science in China Series D: Earth Sciences, 2006, 49, 597-603.	0.9	17
72	Petrogenesis and metallogenic significance of multistage granites in Shimensi tungsten polymetallic deposit, Dahutang giant ore field, South China. Lithos, 2019, 336-337, 326-344.	0.6	17

#	Article	IF	CITATIONS
73	Metallogenesis of the Tibetan collisional orogen. Ore Geology Reviews, 2009, 36, 1.	1.1	16
74	Rb‧r and Smâ€Nd Isochron Ages of the Dongmozhazhua and Mohailaheng Pbâ€Zn Ore Deposits in the Yushu area, southern Qinghai and Their Geological Implications. Acta Geologica Sinica, 2014, 88, 558-569.	0.8	14
75	Reâ€Os Dating of Sulfides from the Volcanogenic Massive Sulfide Deposit at Gacun, Southwestern China. Resource Geology, 2003, 53, 305-310.	0.3	13
76	Genesis of the Gold Deposit in the Indus-Yarlung Tsangpo Suture Zone, Southern Tibet: Evidence from Geological and Geochemical Data. Acta Geologica Sinica, 2017, 91, 947-970.	0.8	12
77	The structural deformation characteristics and the control of gold mineralization of the upper Triassic flysch (Langjiexue Group) in Tibetan Plateau. Geological Journal, 2019, 54, 1331-1342.	0.6	12
78	Structural controls on carbonate-hosted Pb–Zn mineralization in the Dongmozhazhua deposit, central Tibet. Ore Geology Reviews, 2017, 90, 863-876.	1.1	11
79	Lithium content and isotopic composition of the juvenile lower crust in southern Tibet. Gondwana Research, 2018, 62, 198-211.	3.0	11
80	Magnesium isotopic behaviors between metamorphic rocks and their associated leucogranites, and implications for Himalayan orogenesis. Gondwana Research, 2020, 87, 23-40.	3.0	11
81	Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: Implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet. Bulletin of the Geological Society of America, 0, , .	1.6	11
82	Redox states and protoliths of Late Mesozoic granitoids in the eastern Jiangnan Orogen: Implications for W, Mo, Cu, Sn, and (Au) mineralization. Ore Geology Reviews, 2021, 134, 104038.	1.1	11
83	The Zhaxikang Veinâ€type Pbâ€Znâ€Agâ€Sb Deposit in Himalayan Orogen, Tibet: Product by Overprinting and Remobilization Processes during Postâ€collisional Period. Acta Geologica Sinica, 2018, 92, 682-705.	0.8	10
84	Metallogenesis within continental collision zones: Comparisons of modern collisional orogens. Science China Earth Sciences, 2018, 61, 1737-1760.	2.3	9
85	Magmatic expression of tectonic transition from oceanic subduction to continental collision: Insights from the Middle Triassic rhyolites of the North Qiangtang Block. Gondwana Research, 2020, 87, 67-82.	3.0	9
86	Enrichment Nature of Ultrapotassic Rocks in Southern Tibet Inherited from their Mantle Source. Journal of Petrology, 2021, 62, .	1.1	9
87	Oreâ€Forming Fluids as Sampled by Sulfide―and Quartzâ€Hosted Fluid Inclusions in the <scp>J</scp> inwozi Lode Gold Deposit, Eastern <scp>T</scp> ianshan <scp>M</scp> ountains of <scp>C</scp> hina. Resource Geology, 2014, 64, 183-208.	0.3	8
88	Twoâ€Stage Sulfide Mineral Assemblages in the Mineralized Ultramafic Rocks of the Laowangzhai Gold Deposit (Yunnan, SW China): Implications for Metallogenic Evolution. Resource Geology, 2019, 69, 270-286.	0.3	8
89	In situ oxygen isotope, trace element, and fluid inclusion evidence for a primary magmatic fluid origin for the shell-shaped pegmatoid zone within the giant Dahutang tungsten deposit, Jiangxi Province, South China. Ore Geology Reviews, 2019, 104, 540-560.	1.1	8
90	Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China. Science China Earth Sciences, 2022, 65, 167-181.	2.3	8

#	Article	IF	CITATIONS
91	Mineralogy and Chemistry of Sulfides from the Longqi and Duanqiao Hydrothermal Fields in the Southwest Indian Ridge. Acta Geologica Sinica, 2018, 92, 1798-1822.	0.8	7
92	Iron and sulfur isotopic compositions of carbonatite-related REE deposits in the Mianning–Dechang REE belt, China: Implications for fluid evolution. Ore Geology Reviews, 2021, 138, 104373.	1.1	6
93	Mineralogical characteristics and Sr–Nd–Pb isotopic compositions of banded REE ores in the Bayan Obo deposit, Inner Mongolia, China: Implications for their formation and origin. Ore Geology Reviews, 2021, 139, 104492.	1.1	6
94	Gold in the lithosphere of the western South China Block, SW China: Insights from quartz porphyries from the giant Zhenyuan gold deposit. Ore Geology Reviews, 2020, 119, 103312.	1.1	5
95	Metallogenic ages and sulfur sources of the giant Dahutang W–Cu–Mo ore field, South China: Constraints from muscovite 40Ar/39Ar dating and in situ sulfur isotope analyses. Ore Geology Reviews, 2021, 134, 104141.	1.1	5
96	Geochronology and Geochemistry of the Granite Xenolith within the Lamprophyre at the Zhenyuan Gold Deposit (Yunnan Province, SW China). Acta Geologica Sinica, 2022, 96, 477-489.	0.8	5
97	The cold and hot collisional orogens: Thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts. Ore Geology Reviews, 2022, 141, 104671.	1.1	4
98	Metallogenesis in the Tibetan collisional orogenic Belt. , 2005, , 1231-1233.		3
99	Porphyry Cu deposits linked to episodic growth of an underlying parental magma chamber. Science China Earth Sciences, 2020, 63, 1807-1816.	2.3	3
100	Petrogenesis, Redox State, and Mineralization Potential of Triassic Granitoids in the Mengshan District, South China. Frontiers in Earth Science, 2021, 9, .	0.8	3
101	Magmatic processes recorded in plagioclase and the geodynamic implications in the giant Shimensi W–Cu–Mo deposit, Dahutang ore field, South China. Journal of Asian Earth Sciences, 2021, 212, 104734.	1.0	3
102	Hydrous Juvenile Lower Crust at the Western Yangtze Craton Margin as the Main Source of the Beiya Porphyryâ€skarn Au Deposit. Acta Geologica Sinica, 2022, 96, 972-992.	0.8	3
103	Multiple volcanic episodes of the Kermanshah forearc basin, SW Iran: a record of the deactivation and re-initiation of Neotethyan subduction involving a mid-ocean ridge. Journal of the Geological Society, 2023, 180, .	0.9	3
104	Petrogenesis and redox state of late Mesozoic granites in the Pingmiao deposit: Implications for the W–Cu–Mo mineralization in the Dahutang district. Ore Geology Reviews, 2022, 145, 104898.	1.1	2
105	Source of the Oreâ€forming Adakitic Porphyry at the Beiya Superâ€large Au Deposit, Western Yangtze Craton: New Evidence from Zircon Uâ€Pb Ages of the Amphibolite Xenoliths. Acta Geologica Sinica, 2020, 94, 208-209.	0.8	1
106	China and Mongolia—Precambrian-Paleozoic. , 2021, , 494-508.		1
107	INFLUENCE OF ORGANIC MATTER ON Re-Os DATING OF SULFIDES: INSIGHTS FROM THE GIANT JINDING SEDIMENT-HOSTED Zn-Pb DEPOSIT, CHINA. Economic Geology, 0, , .	1.8	1
108	Mixing Deposition of Upper Carboniferous in Jiangshan, Zhejiang Province and its Tectonic Significance. Acta Geologica Sinica, 2010, 84, 269-279.	0.8	0

#	Article	IF	CITATIONS
109	A Special Issue Devoted to the Accretionary and Collisional Tectonics of the Altaids and its Metallogeny: Preface. Acta Geologica Sinica, 2019, 93, I.	0.8	0
110	New Zircon Uâ€₽b Ages for the Volcanoâ€sedimentary Strata in Yamu, Tibet and their Geological Significance. Acta Geologica Sinica, 2021, 95, 687-690.	0.8	0
111	Relationship of the Cenozoic Beiya Cu-Au mineralization to alkali-rich porphyries in western Yunnan, China. , 2005, , 1279-1281.		0
112	Asthenospheric mantle metasomatized by subducted marine sediments: Li isotopic evidence from Dagze mafic rocks, southern Tibet. Lithos, 2022, 426-427, 106782.	0.6	0