Yanqin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10571241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano, 2018, 12, 2027-2034.	7.3	353
2	A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors. Advanced Functional Materials, 2018, 28, 1803684.	7.8	286
3	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
4	Technology evolution from self-powered sensors to AloT enabled smart homes. Nano Energy, 2021, 79, 105414.	8.2	177
5	An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. Journal of Materials Chemistry A, 2020, 8, 13787-13794.	5.2	126
6	Wearable Triboelectric–Human–Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS Nano, 2020, 14, 8915-8930.	7.3	121
7	Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39, 608-615.	8.2	117
8	Spiral Steel WireÂBased Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor. Nano-Micro Letters, 2019, 11, 39.	14.4	114
9	Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber-Based Self-Charging Power Fabric. ACS Applied Materials & Interfaces, 2018, 10, 42356-42362.	4.0	108
10	Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy, 2018, 51, 333-339.	8.2	106
11	All flexible electrospun papers based self-charging power system. Nano Energy, 2017, 38, 210-217.	8.2	97
12	Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	3.7	85
13	Artificial Intelligence of Things (AloT) Enabled Floor Monitoring System for Smart Home Applications. ACS Nano, 2021, 15, 18312-18326.	7.3	80
14	Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Research, 2018, 11, 4313-4322.	5.8	78
15	Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy, 2018, 54, 156-162.	8.2	65
16	Impedance Matching Effect between a Triboelectric Nanogenerator and a Piezoresistive Pressure Sensor Induced Selfâ€Powered Weighing. Advanced Materials Technologies, 2018, 3, 1800054.	3.0	49
17	Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy, 2022, 94, 106956.	8.2	36
18	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	2.6	31

#	Article	IF	CITATIONS
19	Selfâ€Powered Gyroscope Angle Sensor Based on Resistive Matching Effect of Triboelectric Nanogenerator. Advanced Materials Technologies, 2021, 6, 2100797.	3.0	9