Ciro A Guido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10571094/publications.pdf

Version: 2024-02-01

23 1,708 18 23
papers citations h-index g-index

23 23 23 222 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Exploring the Spatial Features of Electronic Transitions in Molecular and Biomolecular Systems by Swift Electrons. Journal of Chemical Theory and Computation, 2021, 17, 2364-2373.	5.3	1
2	Simple Protocol for Capturing Both Linear-Response and State-Specific Effects in Excited-State Calculations with Continuum Solvation Models. Journal of Chemical Theory and Computation, 2021, 17, 5155-5164.	5.3	36
3	An open quantum system theory for polarizable continuum models. Journal of Chemical Physics, 2020, 152, 174114.	3.0	14
4	First-principles investigation of the double ESIPT process in a thiophene-based dye. Physical Chemistry Chemical Physics, 2019, 21, 2307-2317.	2.8	48
5	On the description of the environment polarization response to electronic transitions. International Journal of Quantum Chemistry, 2019, 119, e25711.	2.0	25
6	The Bethe–Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features. Chemical Science, 2018, 9, 4430-4443.	7.4	55
7	Density-Dependent Formulation of Dispersion–Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models. Journal of Chemical Theory and Computation, 2018, 14, 1671-1681.	5. 3	24
8	EXAT: EXcitonic analysis tool. Journal of Computational Chemistry, 2018, 39, 279-286.	3.3	37
9	Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. Journal of Physical Chemistry Letters, 2018, 9, 6892-6899.	4.6	55
10	Control of Coherences and Optical Responses of Pigmentâ€"Protein Complexes by Plasmonic Nanoantennae. Journal of Physical Chemistry Letters, 2016, 7, 2189-2196.	4.6	14
11	Circularly Polarized Luminescence from Axially Chiral BODIPY DYEmers: An Experimental and Computational Study. Chemistry - A European Journal, 2016, 22, 16089-16098.	3.3	119
12	An <i>Ab Initio</i> Description of the Excitonic Properties of LH2 and Their Temperature Dependence. Journal of Physical Chemistry B, 2016, 120, 11348-11359.	2.6	64
13	Circular Dichroism and TDDFT Investigation of Chiral Fluorinated Aryl Benzyl Sulfoxides. European Journal of Organic Chemistry, 2015, 2015, 5554-5562.	2.4	14
14	Plasmon Enhanced Light Harvesting: Multiscale Modeling of the FMO Protein Coupled with Gold Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 5197-5206.	2.5	18
15	The role of magnetic–electric coupling in exciton-coupled ECD spectra: the case of bis-phenanthrenes. Chemical Communications, 2015, 51, 10498-10501.	4.1	32
16	Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description. Journal of Chemical Theory and Computation, 2015, 11, 5782-5790.	5. 3	112
17	Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy. Journal of Chemical Physics, 2014, 140, 104101.	3.0	63
18	Communication: One third: A new recipe for the PBEO paradigm. Journal of Chemical Physics, 2013, 138, 021104.	3.0	115

Ciro A Guido

#	Article	IF	CITATION
19	Benchmarking Time-Dependent Density Functional Theory for Excited State Geometries of Organic Molecules in Gas-Phase and in Solution. Journal of Chemical Theory and Computation, 2013, 9, 2209-2220.	5.3	123
20	On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor. Journal of Chemical Theory and Computation, 2013, 9, 3118-3126.	5.3	335
21	Practical computation of electronic excitation in solution: vertical excitation model. Chemical Science, 2011, 2, 2143.	7.4	202
22	On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 2010, 114, 13402-13410.	2.5	76
23	Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Physical Chemistry Chemical Physics, 2010, 12, 8016.	2.8	126