Ger J M Pruijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1057076/publications.pdf

Version: 2024-02-01

102	6,705	42	78
papers	citations	h-index	g-index
103	103	103	7650 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sj¶gren's syndrome. Annals of the Rheumatic Diseases, 2022, 81, 644-652.	0.9	15
2	Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Science Advances, 2022, 8, eabm1759.	10.3	30
3	Anti–Cytosolic 5′â€Nucleotidase 1A Autoantibodies Are Absent in Juvenile Dermatomyositis. Arthritis and Rheumatology, 2021, 73, 1329-1333.	5.6	2
4	Profiling Serum Antibodies Against Muscle Antigens in Facioscapulohumeral Muscular Dystrophy Finds No Disease-Specific Autoantibodies. Journal of Neuromuscular Diseases, 2021, 8, 801-814.	2.6	6
5	BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils. Cell Reports, 2020, 33, 108387.	6.4	152
6	Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. Journal of Autoimmunity, 2020, 113, 102484.	6.5	42
7	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Communications Chemistry, 2020, 3, .	4.5	13
8	Low molecular weight silicones induce cell death in cultured cells. Scientific Reports, 2020, 10, 9558.	3.3	17
9	Global Characterization of Circulating Nucleic Acids. Methods in Molecular Biology, 2020, 2063, 257-268.	0.9	0
10	NETosis, complement, and coagulation: a triangular relationship. Cellular and Molecular Immunology, 2019, 16, 19-27.	10.5	284
11	Neutrophil proteases degrade autoepitopes of NET-associated proteins. Clinical and Experimental Immunology, 2019, 199, 1-8.	2.6	18
12	Sputum Anticitrullinated Protein Antibodies in Patients With Long-standing Rheumatoid Arthritis. Journal of Clinical Rheumatology, 2018, 24, 122-126.	0.9	2
13	LINE-1 Hypermethylation in Serum Cell-Free DNA of Relapsing Remitting Multiple Sclerosis Patients. Molecular Neurobiology, 2018, 55, 4681-4688.	4.0	24
14	Sequential Prodrug Strategy To Target and Eliminate ACPA-Selective Autoreactive B Cells. Molecular Pharmaceutics, 2018, 15, 5565-5573.	4.6	9
15	Pathogenic variants in glutamyl-tRNAGIn amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nature Communications, 2018, 9, 4065.	12.8	44
16	Autoantibodies to Cytosolic 5′-Nucleotidase 1A in Primary Sjögren's Syndrome and Systemic Lupus Erythematosus. Frontiers in Immunology, 2018, 9, 1200.	4.8	32
17	Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1621-1629.	4.1	71
18	Immuneâ€Array Analysis in Sporadic Inclusion Body Myositis Reveals HLA–DRB1 Amino Acid Heterogeneity Across the Myositis Spectrum. Arthritis and Rheumatology, 2017, 69, 1090-1099.	5.6	41

#	Article	IF	CITATIONS
19	Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. Journal of Autoimmunity, 2017, 80, 39-47.	6.5	87
20	Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Annals of the Rheumatic Diseases, 2017, 76, 862-868.	0.9	71
21	Expression of RMRP RNA is regulated in chondrocyte hypertrophy and determines chondrogenic differentiation. Scientific Reports, 2017, 7, 6440.	3.3	43
22	Coiledâ€Coilâ€Mediated Activation of Oligoarginine Cellâ€Penetrating Peptides. ChemBioChem, 2017, 18, 185-188.	2.6	27
23	PAD Activation in Arthritis. , 2017, , 63-83.		0
24	Development and evaluation of a standardized ELISA for the determination of autoantibodies against cN-1A (Mup44, NT5C1A) in sporadic inclusion body myositis. Autoimmunity Highlights, 2016, 7, 16.	3.9	31
25	Antibody responses to de novo identified citrullinated fibrinogen peptides in rheumatoid arthritis and visualization of the corresponding B cells. Arthritis Research and Therapy, 2016, 18, 284.	3.5	20
26	IMPLICATIONS OF ANTI-CN1A SEROTYPE IN INCLUSION BODY MYOSITIS. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.160-e1.	1.9	1
27	An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions. Analyst, The, 2016, 141, 5321-5328.	3.5	6
28	From autoantibody research to standardized diagnostic assays in the management of human diseases $\hat{a} \in \text{``report of the 12th Dresden Symposium on Autoantibodies. Lupus, 2016, 25, 787-796.}$	1.6	19
29	Reduced glutathione as a physiological co-activator in the activation of peptidylarginine deiminase. Arthritis Research and Therapy, 2016, 18, 102.	3.5	50
30	Disease specificity of autoantibodies to cytosolic $5\hat{a}\in^2$ -nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Annals of the Rheumatic Diseases, 2016, 75, 696-701.	0.9	116
31	Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 578-585.	0.9	161
32	Novel serology testing for sporadic inclusion body myositis. Current Opinion in Rheumatology, 2015, 27, 595-600.	4.3	22
33	RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules, 2015, 5, 3029-3050.	4.0	12
34	Phenylglyoxal-Based Visualization of Citrullinated Proteins on Western Blots. Molecules, 2015, 20, 6592-6600.	3.8	5
35	Citrullination and Carbamylation in the Pathophysiology of Rheumatoid Arthritis. Frontiers in Immunology, 2015, 6, 192.	4.8	60
36	Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome. Nucleic Acids Research, 2014, 42, 7358-7369.	14.5	40

#	Article	IF	CITATIONS
37	Silicon chemistry and silicone breast implants. European Journal of Plastic Surgery, 2014, 37, 123-128.	0.6	20
38	The human peptidylarginine deiminases type 2 and type 4 have distinct substrate specificities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 829-836.	2.3	48
39	Generation of monoclonal antibodies against peptidylarginine deiminase 2 (PAD2) and development of a PAD2-specific enzyme-linked immunosorbent assay. Journal of Immunological Methods, 2014, 405, 15-22.	1.4	10
40	Methods for the Detection of Peptidylarginine Deiminase (PAD) Activity and Protein Citrullination. Molecular and Cellular Proteomics, 2014, 13, 388-396.	3.8	59
41	Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie, 2013, 95, 299-308.	2.6	40
42	Autoantibodies to cytosolic 5′â€nucleotidase 1A in inclusion body myositis. Annals of Neurology, 2013, 73, 397-407.	5.3	206
43	The rheumatoid arthritis synovial fluid citrullinome reveals novel citrullinated epitopes in apolipoprotein E, myeloid nuclear differentiation antigen, and βâ€actin. Arthritis and Rheumatism, 2013, 65, 69-80.	6.7	148
44	ACPA fine-specificity profiles in early rheumatoid arthritis patients do not correlate with clinical features at baseline or with disease progression. Arthritis Research and Therapy, 2013, 15, R140.	3.5	54
45	Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. Journal of Cell Biology, 2013, 200, 577-588.	5.2	129
46	Pseudophosphorylated $\hat{l}\pm B$ -Crystallin Is a Nuclear Chaperone Imported into the Nucleus with Help of the SMN Complex. PLoS ONE, 2013, 8, e73489.	2.5	17
47	Viperin, a key player in the antiviral response. Microbes and Infection, 2012, 14, 419-426.	1.9	89
48	Detection of transglutaminase activity using click chemistry. Amino Acids, 2012, 43, 1251-1263.	2.7	13
49	Preventing Thiol-Yne Addition Improves the Specificity of Strain-Promoted Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2012, 23, 392-398.	3.6	243
50	Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cellular and Molecular Life Sciences, 2011, 68, 2469-2480.	5.4	32
51	Myositis-specific autoantibodies: detection and clinical associations. Autoimmunity Highlights, 2011, 2, 5-20.	3.9	11
52	Are the Ro RNPâ€associated Y RNAs concealing microRNAs? Y RNAâ€derived miRNAs may be involved in autoimmunity. BioEssays, 2011, 33, 674-682.	2.5	45
53	RNase MRP and disease. Wiley Interdisciplinary Reviews RNA, 2010, 1, 102-116.	6.4	51
54	The Human Exosome and Disease. Advances in Experimental Medicine and Biology, 2010, 702, 132-142.	1.6	54

#	Article	IF	Citations
55	Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Annals of the Rheumatic Diseases, 2010, 69, 1554-1561.	0.9	268
56	Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Research, 2010, 38, 4052-4066.	14.5	31
57	Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance. Arthritis Research and Therapy, 2010, 12, R219.	3.5	54
58	Anti CP Antibody, a Marker for the Early Detection of Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 2008, 1143, 268-285.	3.8	162
59	Detection and occurrence of the 60- and 52-kD Ro (SS-A) antigens and of autoantibodies against these proteins. Clinical and Experimental Immunology, 2008, 86, 99-105.	2.6	81
60	Sera from patients with rheumatic diseases recognize different epitope regions on the 52-kD Ro/SS-A protein. Clinical and Experimental Immunology, 2008, 94, 227-235.	2.6	54
61	Characterization of murine monoclonal antibodies against 60-kD Ro/SS-A and La/SS-B autoantigens. Clinical and Experimental Immunology, 2008, 101, 45-54.	2.6	34
62	Cartilage–hair hypoplasia-associated mutations in the RNase MRP P3 domain affect RNA folding and ribonucleoprotein assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 455-466.	4.1	25
63	C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Research, 2007, 35, 2564-2572.	14.5	120
64	Methylation of Arginine Residues Interferes with Citrullination by Peptidylarginine Deiminases in vitro. Journal of Molecular Biology, 2007, 367, 1118-1129.	4.2	138
65	Caspase-mediated cleavage of the exosome subunit PM/Scl-75 during apoptosis. Arthritis Research and Therapy, 2007, 9, R12.	3.5	8
66	C1D is a major autoantibody target in patients with the polymyositis–scleroderma overlap syndrome. Arthritis and Rheumatism, 2007, 56, 2449-2454.	6.7	14
67	Fine specificity of the anti–citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis and Rheumatism, 2007, 56, 3949-3952.	6.7	114
68	Cartilage hair hypoplasia mutations that lead to <i>RMRP</i> promoter inefficiency or RNA transcript instability. American Journal of Medical Genetics, Part A, 2007, 143A, 2675-2681.	1.2	30
69	ABAP: Antibody-based assay for peptidylarginine deiminase activity. Analytical Biochemistry, 2007, 369, 232-240.	2.4	25
70	The RNA interference pathway: a new target for autoimmunity. Arthritis Research and Therapy, 2006, 8, 110.	3.5	14
71	Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. Journal of Comparative Neurology, 2006, 498, 217-226.	1.6	74
72	Cell and Molecular Biology of the Exosome: How to Make or Break an RNA. International Review of Cytology, 2006, 251, 159-208.	6.2	32

#	Article	IF	Citations
73	Differential association of protein subunits with the human RNase MRP and RNase P complexes. Rna, 2006, 12, 1373-1382.	3.5	46
74	Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. Rna, 2006, 13, 65-75.	3.5	37
75	Apoptotic modifications affect the autoreactivity of the U1 snRNP autoantigen. Autoimmunity Reviews, 2005, 4, 380-388.	5.8	28
76	MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Research, 2005, 33, 6795-6804.	14.5	93
77	Autoantibodies specific for apoptotic U1-70K are superior serological markers for mixed connective tissue disease. Arthritis Research, 2005, 7, R302.	2.0	52
78	Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Research, 2004, 32, 2138-2146.	14.5	81
79	PM-Scl-75 is the main autoantigen in patients with the polymyositis/scleroderma overlap syndrome. Arthritis and Rheumatism, 2004, 50, 565-569.	6.7	66
80	PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays, 2003, 25, 1106-1118.	2.5	871
81	Caspase-mediated cleavage of the U snRNP-associated Sm-F protein during apoptosis. Cell Death and Differentiation, 2003, 10, 570-579.	11.2	12
82	Recombinant human monoclonal autoantibodies specific for citrulline-containing peptides from phage display libraries derived from patients with rheumatoid arthritis. Journal of Rheumatology, 2003, 30, 1696-711.	2.0	32
83	The hU3-55K Protein Requires 15.5K Binding to the Box B/C Motif as Well as Flanking RNA Elements for Its Association with the U3 Small Nucleolar RNA in Vitro. Journal of Biological Chemistry, 2002, 277, 48490-48500.	3.4	41
84	Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Research, 2002, 4, 134.	2.0	81
85	Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis and Rheumatism, 2002, 46, 3266-3272.	6.7	54
86	Autoantibodies against small nucleolar ribonucleoprotein complexes and their clinical associations. Clinical and Experimental Immunology, 2002, 130, 532-540.	2.6	69
87	Mutations in the RNA Component of RNase MRP Cause a Pleiotropic Human Disease, Cartilage-Hair Hypoplasia. Cell, 2001, 104, 195-203.	28.9	461
88	Basic Domains Target Protein Subunits of the RNase MRP Complex to the Nucleolus Independently of Complex Association. Molecular Biology of the Cell, 2001, 12, 3680-3689.	2.1	24
89	Analysis of the molecular composition of Ro ribonucleoprotein complexes. FEBS Journal, 2000, 267, 2778-2789.	0.2	47
90	The fate of U1 snRNP during anti-Fas induced apoptosis: specific cleavage of the U1 snRNA molecule. Cell Death and Differentiation, 2000, 7, 70-79.	11.2	47

#	Article	IF	CITATION
91	Caspase-dependent cleavage of nucleic acids. Cell Death and Differentiation, 2000, 7, 616-627.	11.2	45
92	Architecture and Function of the Human Endonucleases RNase P and RNase MRP. IUBMB Life, 2000, 49, 265-272.	3.4	58
93	Detailed Analysis of the Phosphorylation of the Human La (SS-B) Autoantigen. (De)phosphorylation Does Not Affect Its Subcellular Distributionâ€. Biochemistry, 2000, 39, 3023-3033.	2.5	42
94	hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes. Nucleic Acids Research, 1999, 27, 2465-2472.	14.5	39
95	Translational control by the La antigen. Structure requirements for rescue of the double-stranded RNA-mediated inhibition of protein synthesis. FEBS Journal, 1999, 266, 151-162.	0.2	13
96	Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Research, 1999, 27, 1070-1078.	14.5	33
97	Characterization of human telomerase complex. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10075-10079.	7.1	25
98	Characterization of murine monoclonal antibodies against the Ro52 autoantigen. Clinical and Experimental Immunology, 1997, 110, 53-62.	2.6	12
99	Interaction of the La (SS-B) Autoantigen with Small Ribosomal Subunits. FEBS Journal, 1996, 236, 649-655.	0.2	41
100	Anti-La Monoclonal Antibodies Recognizing Epitopes Within the RNA-Binding Domain of the La Protein Show Differential Capacities to Immunoprecipitate RNA-Associated La Protein. FEBS Journal, 1995, 232, 611-619.	0.2	51
101	Anti-La Monoclonal Antibodies Recognizing Epitopes Within the RNA-Binding Domain of the La Protein Show Differential Capacities to Immunoprecipitate RNA-Associated La Protein. FEBS Journal, 1995, 232, 611-619.	0.2	1
109	Structure and function of La and Po PNPs, Molecular Biology Paperts, 1993, 18, 113-119	9.9	00